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Resumo
Este artigo tenta apresentar um panorama simples de vários aspectos da estrutura modal na termodinâmica rela-
tivística fora do equilíbrio. Seu foco pedagógico está na relação entre os modos de perturbações de comprimento
de onda longo da teoria causal de Müller-Israel-Stewart (MIS) e os modos da teoria tradicional de Eckart. Esta
questão foi esclarecida, principalmente, em uma série de artigos assinados por Hiscock e Lindblom (veja [1–3]).
Aqui, compilo algumas características essenciais sobre esse tópico que não exigem todo o formalismo da teoria
completa.

Abstract
This paper tries to present a simple picture of several aspects of the mode structure in relativistic non-equilibrium
thermodynamics. Its pedagogical focus is on the relation between long-wavelength perturbation modes of the
causal Müller-Israel-Stewart (MIS) theory and those of the traditional Eckart theory. Principally, this issue was
clarified in a series of papers by Hiscock and Lindblom (see [1–3]). Here, I put together some essential features
of this topic which do not require the entire formalism of the complete theory.
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1 Introduction

Traditionally, thermodynamical processes out
of equilibrium are described by the theories of
Eckart [4] and Landau and Lifshitz [5]. With the
works by Müller [6], Israel [7], Israel and Stew-
art [8, 9], Pavón, Jou, and Casas-Vázquez [10],
Hiscock and Lindblom [1–3] it became clear, how-
ever, that the traditional theories suffer from seri-
ous drawbacks concerning causality and stability.
These difficulties could be traced back to their re-
striction to first-order deviations from thermody-
namical equilibrium. If one includes second-order
deviations as well, the corresponding problems
disappear. By now, it is generally agreed that
any analysis of dissipative phenomena in relativ-
ity should be based on the theories by Müller,
Israel, and Stewart (MIS), although, in specific
cases, the latter might reproduce results of the
Eckart theory [3]. Cosmological implications of
second-order theories, also called causal thermo-
dynamics, were first considered by Belinskii et
al. [11]. Of particular interest in this context have
been bulk-viscous cosmological models [12–19].

While conceptually the idea of including

second-order deviations from equilibrium is quite
clear, the detailed implementation requires a
rather extended formalism. Therefore it might
be desirable to find a simplified but nevertheless
exact (within a certain range) account of essen-
tial features of causal thermodynamics which fo-
cusses in detail on the points where it differs from
Eckart-type theories. One of the shortcomings of
the latter theories is their prediction of instabil-
ities of perturbation modes on very short time
scales. Our aim here is to clarify the origin of this
different behavior for the case of long-wavelength
modes in flat space-time.

We start our analysis by recalling basic rela-
tions of imperfect fluid dynamics in Sec. 2. This
implies the structure of the energy-momentum
tensor and that of the particle-flow vector. It
follows a discussion of the conservation laws for
particle number, energy and momentum, which
includes the constitutive relations for the ther-
modynamic fluxes. Through these relations the
difference between MIS and Eckart-type theories
becomes manifest. Up to this point the formal-
ism is kept general. In Sec. 3 we specify the
general dynamics to linear perturbations about
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a fluid at rest in Minkowski-space. This excludes
all gravitational degrees of freedom. But since
fluid-dynamical scales in most applications are
smaller than gravitational scales, e.g., the Hubble
scale in cosmology, the restriction to a flat back-
ground may nevertheless capture astrophysically
and cosmologically relevant situations. Consider-
ing plane-wave solutions, the linearized conserva-
tion equations are then boiled down in Sec. 4 to a
system of coupled algebraic equations in terms of
perturbations of the number density and the tem-
perature. This system serves as a starting point
to investigate the long-wavelength mode struc-
ture, the main topic of this paper. We identify
the origin of instabilities in Eckart’s theory and
point out how the MIS theory avoids such un-
physical behavior. We emphasize that the prop-
agation of acoustic modes including their damp-
ing through viscosity and heat conductivity, orig-
inally obtained within Eckart’s theory, remains
exactly valid in causal thermodynamics as well.

2 Imperfect fluids

2.1 Energy-momentum tensor and
particle flow vector

The energy-momentum tensor of an imperfect
fluid is generally given by (greek indices run over
0,1,2,3)

Tαβ = Tαβ(0) + πhαβ + παβ + qαuβ + qβuα (1)

with
Tαβ(0) = ρuαuβ + phαβ (2)

and

παβuβ = qαuα = παα = hαβuα = 0, (3)
uαuα = −1. (4)

Here, ρ is the energy density of a fiducial thermo-
dynamical equilibrium state, represented by the
part Tαβ(0) of the total energy-momentum tensor,
p is the corresponding equilibrium pressure, uα

is the fluid four-velocity in the Eckart frame and
hαβ = gαβ + uαuβ is the spatial projection ten-
sor. The speed of light has been normalized to
unity. The quantity π denotes that part of the
scalar pressure which is connected with entropy
production, −παβ is the anisotropic stress tensor
and qα is the heat flux vector. Within the Eckart

frame the particle number flow vector Nα is given
by

Nα = nuα, (5)

where n is the particle number density.

2.2 Conservation equations

The basic set of hydrodynamical equations fol-
lows from the conservation laws Nα

;α = 0 and
Tαβ;β = 0. This implies particle number conser-
vation

ṅ+ Θn = 0, (6)

where Θ ≡ uα;α is the fluid expansion scalar and
ṅ ≡ n,αuα, as well as the energy conservation

ρ̇+ Θ (ρ+ p+ π) +∇αqα

+ 2u̇αq
α + σαβπ

αβ = 0 (7)

and the momentum conservation

(ρ+ p+ π) u̇α +∇α (p+ π) +∇βπαβ + u̇βπαβ

+ hβαq̇β +

[
ωαβ + σαβ +

4

3
Θhαβ

]
qβ = 0, (8)

where ∇αqα ≡ hβαqα;β , etc. The quantity σαβ is
the shear tensor

σαβ =
1

2

(
∇αuβ +∇βuα −

2

3
hαβΘ

)
(9)

and ωαβ is the vorticity tensor

ωαβ =
1

2
(∇αuβ −∇βuα) . (10)

The energy conservation (7) is the result of the
projection uαT

αβ
;β = 0 of Tαβ;β = 0 while the mo-

mentum conservation (8) follows from the orthog-
onal projection hαµT

µβ
;β = 0. We assume equa-

tions of state of the general form

p = p (n, T ) , ρ = ρ (n, T ) , (11)

i.e., we will use the particle number density n
and the temperature T as independent thermo-
dynamical variables. Within the MIS theory the
thermodynamic “fluxes” π, qα and παβ obey the
following evolution equations, in which, for sim-
plicity, we have neglected the couplings between
heat flux and viscous pressures [1]:

π = −ζ

[
Θ + β0π̇ +

π

2
T

(
β0
T
uγ
)

;γ

]
, (12)
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qα = −λhαβ
[
∇βT + T u̇β + Tβ1q̇β

+
T 2

2
qβ

(
β1
T
uγ
)

;γ

]
, (13)

and

παβ = −2ηhαµhβν
[
σµν + β2π̇µν

+
πµν
2

(
β2
T
uγ
)

;γ

]
. (14)

The symbols ζ, λ and η denote the (positive)
coefficients of bulk viscosity, heat conductivity
and shear viscosity, respectively. Additionally,
the second-order theory is characterized by the
(positive) coefficients β0, β1 and β2. These coeffi-
cients appear in terms with time derivatives of π,
qα and παβ , respectively. The appearance of time
derivatives of π, qα and παβ makes the relations
(12) - (14) evolution equations which ensure that
the entropy production is non-negative [1]. The
Eckart case corresponds to β0 = β1 = β2 = 0,
which cancels these time derivatives and reduces
the set (12) - (14) to algebraic equations.

3 Linearization procedure

3.1 Background

In a first step we specify the relations of the
previous chapter to a homogeneous, isotropic per-
fect fluid at rest in Minkowski space. The corre-
sponding quantities are denoted by an overbar.
We have

ū0 = 1 , ū0 = −1 , ūa = ūa = 0, (15)

(latin indices run over 1,2,3) and

Θ̄ = ∇αT̄ = σ̄αβ = ¯̇uα = π̄ = π̄αβ = q̄α = 0. (16)

It follows that

n̄ = const, T̄ = const, ρ̄ = const, p̄ = const. (17)

3.2 First-order perturbations

Now we consider perturbations of all the ther-
modynamic quantities, denoted by a hat symbol:

n = n̄+ n̂, T = T̄ + T̂ ,

(18)
ρ = ρ̄+ ρ̂, p = p̄+ p̂.

“First order" here means always linear in n̂, T̂ , ρ̂
and p̂. Perturbing also the relation ηµνuµuν = −1
yields at linear order,

ηµν û
µūν = 0 ⇒ û0 = û0 = 0. (19)

For the perturbed spatial components of the four-
velocity we have ûm = ûm and the first-order
expansion scalar is

Θ̂ = ûm,m . (20)

For the first-order perturbations of the accelera-
tion we find

(u̇µ)̂ = ûµ,νu
ν + uµ,ν û

ν ⇒

(u̇0)̂ = 0, (u̇m,m)̂ =
˙̂
Θ. (21)

Furthermore, we have at first order

hα0 q̇α = 0, hαmq̇α = q̇m. (22)

The terms u̇αq
α, σαβπ

αβ , πu̇µ, u̇βπαβ and[
ωαβ + σαβ + 4

3Θhαβ
]
qβ are of second order and

will be omitted in the following.

3.3 First-order conservation equations

The linearized set of equations becomes (now
we omit the overbars for the background vari-
ables)

˙̂n+ nΘ̂ = 0, (23)
˙̂ρ+ (ρ+ p) Θ̂ + qa,a = 0, (24)

and

(ρ+ p) (u̇m)̂ + p̂,m+π,m+πma,a+ q̇m = 0. (25)

Taking the spatial divergence of Eq. (25) and
applying the last of the relations (21), we get

(ρ+ p)
˙̂
Θ + ∆p̂+ ∆π+πma,ma+ q̇m,m = 0, (26)

where ∆ is the three-dimensional Laplacian. By
using (26) together with (23) and (24) we shall
obtain the longitudinal modes. The transverse
modes will be found by taking the spatial rotation
of (25):

2 (ρ+ p) ẇa + εamn (πmb,bn + q̇m,n) = 0, (27)

where
wa ≡

1

2
εamnûm,n (28)

and εamn is the three-dimensional Levi-Civita
symbol.

These are the basic equations from which we
shall derive the explicit mode structure in the fol-
lowing section.
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4 Mode structure

4.1 Longitudinal modes

For the dissipative terms in (24) and (26) we
find up to linear order

∆π = −ζ
[
∆Θ̂ + β0∆π̇

]
, (29)

qa,a = −λT
[

∆T

T
+

˙̂
Θ + β1q̇a,a

]
, (30)

and

πma,ma = −2η

[
2

3
∆Θ̂ + β2π̇ma,ma

]
, (31)

respectively. The divergence terms in (12)-(14)
are of second order and do not contribute in (29)-
(31). In (31) we have used that at first order

σ00 = σ0b = σb0 = 0, (32)

and
σab,ab =

2

3
∆Θ̂. (33)

Upon using the equations of state (11) we may
replace ˙̂ρ by

˙̂ρ =

(
ρ+ p− T ∂p

∂T

) ˙̂n

n
+
∂ρ

∂T
˙̂
T (34)

and ∆p̂ by

∆p̂ =
∂p

∂n
∆n̂+

∂p

∂T
∆T̂ . (35)

To obtain (34) we have used the thermodynamic
relation

∂ρ

∂n
=
ρ+ p

n
− T

n

∂p

∂T
, (36)

which guarantees that the entropy s per particle,
defined by

s =
ρ+ p

nT
− µ

T
, (37)

where µ is the chemical potential, is a state func-
tion. Eq. (36) then follows from the require-
ment that the second derivatives of s with respect
to the basic thermodynamical variables be inter-
changeable:

∂2s

∂n∂T
=

∂2s

∂T∂n
. (38)

The set of independent variables consists of n̂, T̂ ,
and Θ̂ as well as of π, qa, and πma. Now we look
for plane-wave solutions

n̂ , T̂ , Θ̂, ... ∝ exp [i (ωt− kaxa)]. (39)

From the perturbed particle number conservation
equation (23) we find

Θ̂ = −iω n̂
n
. (40)

Since Θ̂ may always be eliminated with the help
of the last relation, we will end up with a system
for n̂ and T̂ . The energy conservation (24) with
(23), (34) and (40) then becomes

− iωT ∂p
∂T

n̂

n
+ iωT̂

∂ρ

∂T
− ikaqa = 0, (41)

while the momentum conservation (26) with (35),
(40) and ˙̂

Θ→ iωΘ̂ = ω2n̂/n is[
(ρ+ p)ω2 − k2n∂p

∂n

]
n̂

n
− k2T ∂p

∂T

T̂

T
− k2π

− kmkaπma − iωikmqm = 0, (42)

where k2 ≡ kak
a. For the dissipative quantities

we find from (29)-(31)

− k2π = −iω ζk2

1 + iωζβ0

n̂

n
, (43)

− ikaqa = − λT

1 + iωλTβ1

[
−k2 T̂

T
+ ω2 n̂

n

]
, (44)

and

− kakbπab = −4

3
iωk2

η

1 + 2iωηβ2

n̂

n
. (45)

With the help of the definitions

ζβ ≡ ζ

1 + iωζβ0
, (46)

λβ ≡ λ

1 + iωλTβ1
, (47)

ηβ ≡ η

1 + 2iωηβ2
, (48)

we may write

− k2π = −iωk2ζβ
n̂

n
, (49)

− ikaqa = −λβT

[
−k2 T̂

T
+ ω2 n̂

n

]
, (50)

and
− kakbπab = −4

3
iωk2ηβ

n̂

n
, (51)

respectively. The definitions (46)-(48) were cho-
sen such that formally the structures (49)-(51)
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are those of the Eckart theory. This will allow
us to treat the first- and second-order theories in
parallel.

Combining the conservation equations (41) and
(42) with (49)-(51), our system reduces to[

ωT
∂p

∂T
− iω2λβT

]
n̂

n

+

[
−ωT ∂ρ

∂T
+ ik2λβT

]
T̂

T
= 0 (52)

and[
ω2− n

ρ+ p

∂p

∂n
k2 − iωk2

(
4
3ηβ + ζβ

ρ+ p

)

− iω3 λβT

ρ+ p

]
n̂

n
+

[
− T

ρ+ p

∂p

∂T
k2

+ iωk2
λβT

ρ+ p

]
T̂

T
= 0, (53)

respectively. The set of equations (52) and
(53) describes first-order perturbations within the
MIS theory where the coupling between heat flux
and viscous pressures was neglected. The corre-
sponding perturbations of the Eckart theory fol-
low for ζβ → ζ, λβ → λ, and ηβ → η. Notice that
ζβ , λβ , and ηβ depend on ω.

The system (52) and (53) provides us with the
relation[
ω2 n

ρ+ p

∂p

∂n
k2 − iωk2

( 4
3ηβ + ζβ

ρ+ p

)
− iω3 λβT

ρ+ p

]

×

[
− ωT ∂ρ

∂T
+ ik2λβT

]
−

[
− T

ρ+ p

∂p

∂T
k2

+ iωk2
λβT

ρ+ p

][
ωT

∂p

∂T
− iω2λβT

]
= 0. (54)

By multiplying this equation by − (T∂ρ/∂T )−1

and introducing the square of the sound velocity
c2s by

c2s ≡
n

ρ+ p

∂p

∂n
+

T

ρ+ p

(
∂p
∂T

)2
∂ρ
∂T

, (55)

we obtain the dispersion relation

−iω4 λβT

ρ+ p
+ ω3 − ωk2c2s − iω2k2

4
3ηβ + ζβ

ρ+ p

−iω2k2λβT

[
1

T ∂ρ
∂T

− 2

ρ+ p

∂p
∂T
∂ρ
∂T

]
+ik4λβ

n

ρ+ p

∂p
∂n
∂ρ
∂T

= 0. (56)

We have neglected here products of dissipative
quantities. It is obvious that the perfect-fluid
limit is

ω2 = c2sk
2, (ζ = λ = η = 0) . (57)

With the help of the definitions (46), (47), and
(48) for ζβ , λβ , and ηβ , respectively and neglect-
ing higher-order terms in ζ, λ, and η, we may
write (56) as

− iω4 λT

ρ+ p
+
(
ω3 − ωk2c2s

) [
(1 + iωζβ0)

× (1 + iωλTβ1) (1 + 2iωηβ2)

]
− iω2k2

4
3η + ζ

ρ+ p

− iω2k2λT

[
1

T ∂ρ
∂T

− 2

ρ+ p

∂p
∂T
∂ρ
∂T

]
+ ik4λ

n

ρ+ p

∂p
∂n
∂ρ
∂T

= 0. (58)

Let us now look at the long-wavelength limit
k → 0. We obtain

−iω4 λT

ρ+ p
+ ω3

[
(1 + iωζβ0) (1 + iωλTβ1)

× (1 + 2iωηβ2)
]

= 0, (k → 0) . (59)

The last relation allows us to point out the dif-
ferent stability behavior of the MIS theory com-
pared with Eckart’s theory. Besides of the always
existing threefold solution ω = 0 we have, in the
Eckart case β0 = β1 = β2 = 0, the solution

iωLE
=
ρ+ p

λT
. (60)

As long as the right-hand side of (60) is posi-
tive, this means an imaginary frequency which,
according to (39), describes an exponential in-
stability on extremely short timescales which are
much below any hydrodynamic scale [2].

It is obvious, how the situation changes in the
MIS theory, where we find, besides of ω = 0
(threefold)

iωL0 = − 1

β0ζ
, (61)

iωL1 = − ρ+ p

λT [β1 (ρ+ p)− 1]
, (62)

iωL2 = − 1

2β2η
, (63)

instead of (60). Since β1 (ρ+ p) > 1 (see for-
mula (134) in [1]), we conclude, that none of these
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modes is unstable. While there is no counterpart
of the modes (61) and (63) in the Eckart the-
ory, the unstable mode (60) of the latter becomes
stable according to (62). (For comparison: The
modes (61)-(63) are (37)-(39) in [3]).

All the modes (60)-(63) describe perturbations
which are far away from the perfect fluid be-
haviour (57). In fact, in obtaining (59) by for-
mally putting k = 0 in (58), one considers the
dissipative terms retained in (59) to be of higher
order than the perfect fluid contribution which
leads to c2sk2 in (57). These modes do not respect
the requirement that dissipative terms should
provide small correction to the perfect-fluid be-
havior. The modes (61)-(63) are strongly damped
on time scales much smaller than any hydrody-
namic time scale.

Next we study the dispersion relation for small
but finite values of k. Up to linear order in the
transport coefficients, Eq. (58) is equivalent to

iω4

[
λT

ρ+ p
(β1 (ρ+ p)− 1) + β0ζ + 2β2η

]
+ ω3

+ωk2c2s −
iω2k2

ρ+ p

[(
4

3
+ 2c2sβ2 (ρ+ p)

)
η

+
(
1 + β0 (ρ+ p)

)
ζ + ik4λ

n

ρ+ p

∂p
∂n
∂ρ
∂T

+λT

(
β1c

2
s (ρ+ p) +

ρ+ p

T ∂ρ
∂T

− 2
∂p
∂T
∂ρ
∂T

)]
= 0. (64)

We are now interested in the solutions ω = ω (k)
for small values of k about the mentioned three-
fold solution ω = 0. To this purpose we expand
the dispersion relation (64) about ω = 0 accord-
ing to

ω = aLk + bLk
2 + ..... (65)

and compare different orders of k separately. At
lowest order which is k3 we find

aL1 = cs, (66)
aL2 = −cs, (67)
aL3 = 0. (68)

The k4-order terms provide us with

bL1,2 =
i

2

[
4
3η + ζ

ρ+ p
+
λT

nT

(
1

cv
− 1

cp

)

+
1

ρ+ p

(
c2s − 2

∂p
∂T
∂ρ
∂T

)]
, (69)

bL3 =
iλ

ncp
, (70)

where

cv ≡
1

n

∂ρ

∂T
, cp ≡ cv

ρ+ p

n ∂p∂n
c2s. (71)

It is remarkable that all the quantities β0, β1
and β2 cancel and do not influence the modes
up to the order k2. (This property is mentioned
in [3] following formula (40). The modes (65)
with (66)-(70) exactly coincide with those of the
Eckart theory. They were first derived by Wein-
berg [20] and also in [21]). The coefficients (69)
describe a damping of the propagating (with the
sound velocities (66) and (67)) modes, while the
third mode, characterized by (68) and (70) is sim-
ply overdamped. These modes characterize per-
turbations which are close to the perfect fluid be-
haviour. The dissipative terms describe small de-
viations from equilibrium.

4.2 Transverse modes

Using (13) and (14) we find for the dissipative
terms in (27) up to linear order

εamnq̇m,n = −λT [2ẅa + β1εamnq̈m,n] (72)

and

εamnπmp,pn = −2η [∆wa + β2εamnπ̇mp,pn] . (73)

For plane-wave solution of the type (39), Eq. (27)
becomes

2iω (ρ+ p)wa − kpknεamnπmp
+ iω (−ikn) εamnqm = 0, (74)

while the relations (72) and (73) transform into

iω (−ikn) εamnqm = 2λβTω
2wa (75)

and
− knkbεamnπmb = 2ηβk

2wa, (76)
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respectively, where λβ is given by (47) and ηβ by
(48). Use of (75) and (76) in (74) provides us
with the dispersion relation

iω (ρ+ p) + ηβk
2 + λβTω

2 = 0, (77)

which for ηβ → η and λβ → λ coincides with the
corresponding relation of Eckart’s theory. We in-
vestigate the dispersion relation (77) analogously
to its counterpart (56) for longitudinal modes.
For k → 0 we obtain, up to linear order in the
dissipative terms,

iω

[
1 + iω

λT

ρ+ p
(β1 (ρ+ p)− 1)

]
×
[
1 + 2iωηβ2

]
= 0, (k → 0) . (78)

For the Eckart theory (β1 = β2 = 0) we obtain
ω = 0 and

iωTE =
ρ+ p

λT
, (79)

i.e., the same short-time instability as in the lon-
gitudinal case (cf. Eq. (60)). For nonvanishing
values of β1 and β2 we find, except of the solution
ω = 0,

iωT1 = −ρ+ p

λT

1

β1 (ρ+ p)− 1
(80)

and
iωT2 = − 1

2β2η
. (81)

All the comments following Eq. (63) apply here
also. In particular, the instability of the Eckart
theory is removed here as well for β1 (ρ+ p) > 1.
The modes (80) and (81) describe a damping
on extremely short time-scales. For comparison,
(80) corresponds to (35) in [3] while (81) corre-
sponds to (34) in [3].

The solutions ω = ω (k) for small vales of k
about ω = 0 are again found by an ansatz of the
type (65),

ω = aTk + bTk
2 + .... (82)

Using this ansatz in (77) and comparing terms of
linear order in k we find

aT = 0, (83)

while the order k2 yields

bT = −i η

ρ+ p
. (84)

This is exactly the nonpropagating, transverse
shear mode of the first-order theory. Conse-
quently, neither the longitudinal nor the trans-
verse modes are influenced by the quantities β0,
β1 and β2 in linear and in quadratic orders in k.

5 Conclusion

With (61)-(63) and (65)-(70) for the longitudi-
nal case, as well as with (80) - (84) for the trans-
verse one, we have obtained a comprehensive pic-
ture of the hydrodynamic modes in a dissipative
fluid in the long-wavelength limit. We have clari-
fied the relationship between the mode structures
of the MIS and the Eckart theories. None of the
results here is new. But I hope this specific ped-
agogically motivated presentation may be helpful
for a better physical understanding and, possi-
bly, may also be useful as a starting point and
reference for further investigations in dissipative
relativistic fluid dynamics.
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