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Resumo
No centenário da mecânica quântica, este trabalho traz uma revisão dos fundamentos, desafios e novos horizontes
da teoria quântica de muitos corpos, com foco na Teoria do Funcional da Densidade (DFT), no método GW
e em diversas aplicações desses métodos nas áreas de astronomia e em metodologias emergentes baseadas
em Machine Learning (ML) e algoritmos evolutivos. Ao explorar essas aplicações, da astronomia à inteligência
artificial, buscamos evidenciar o caráter transversal dessa teoria sexagenária, que continua sendo uma ferramenta
indispensável para o estudo das propriedades da matéria e para o avanço da inovação tecnológica.

Abstract
On the centennial of quantum mechanics, this work provides a comprehensive review of the theoretical foun-
dations, current challenges, and emerging frontiers in many-body quantum theory, with particular emphasis on
Density Functional Theory (DFT), the GW approximation, and their applications in fields such as astronomy
and in novel methodologies grounded in Machine Learning (ML) and evolutionary algorithms. By surveying
these diverse applications, from astrophysical systems to artificial intelligence, we underscore the inherently
interdisciplinary character of this sixty-year-old framework, which continues to be indispensable for advancing
our understanding of the properties of matter and for driving technological innovation.
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1 Introdução

A mecânica quântica e seus desdobramentos es-
tão no centro das maiores revoluções científicas
pelas quais a humanidade já passou. Desde 1901,
quando Planck introduziu a constante que con-
fere significado à quantização da energia [1], e
tanto Einstein quanto Compton utilizaram esse
conceito para explicar, respectivamente, o efeito
fotoelétrico e o efeito Compton [2, 3], observa-

mos um avanço significativo na ciência, especial-
mente em nosso entendimento sobre a matéria,
permitindo-nos compreender o mundo de uma
maneira diferente. O desenvolvimento de novas
tecnologias e dispositivos só foi possível graças ao
surgimento da mecânica quântica e à nova com-
preensão que adquirimos sobre átomos, molécu-
las e sólidos, permitindo sua aplicação em tec-
nologias disruptivas. Esse progresso começou,
em grande parte, com a introdução dos mode-
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los atômicos de Rutherford (1909) [4, 5] e, pos-
teriormente, de Bohr (1913) [6], que trouxeram
luz ao surgimento, ainda incipiente, da área de
pesquisa denominada estrutura eletrônica [7, 8].
Depois disso, entramos na era em que a mecâ-
nica quântica passa a se estabelecer a partir dos
formalismos de Schrödinger e Heisenberg [9–13],
usando as bases das ideias já estabelecidas como
a dualidade onda-partícula de De Broglie [14], os
experimentos de Stern-Gerlach [15] e muitos ou-
tros eventos marcantes dos primórdios da mecâ-
nica quântica [16–18].

À primeira vista, os elementos fundamentais
para a solução de problemas envolvendo elétrons
no regime quântico já estavam estabelecidos.
Utilizando conceitos essenciais, como o fato de
os elétrons serem férmions e necessitarem ser
descritos por uma função de onda antissimétrica,

em acordo com o Princípio de Pauli [17, 19, 20],
acreditava-se ser possível obter as informações
necessárias sobre sistemas com um ou muitos
elétrons. Dessa forma, imaginava-se que todo o
entendimento da matéria, configurado como um
problema de muitos corpos do ponto de vista
quântico, estaria resolvido. As tentativas mais co-
nhecidas para enfrentar esse desafio no contexto
atômico foram realizadas por D. R. Hartree [21] e
Vladimir Fock [22]. Hartree foi um dos pioneiros
a tratar sistemas multieletrônicos resolvendo, de
forma aproximada, a equação de Schrödinger. É
evidente, contudo, que a solução dessa equação
para sistemas com mais de um elétron não é
trivial. O hamiltoniano Ĥ é dado pela soma
da energia cinética não relativística com as in-
terações Coulombianas entre elétrons e núcleos1:
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= T̂e + T̂N + V̂ee + V̂NN + V̂Ne, (1)

onde T̂e representa o operador de energia ciné-
tica eletrônica, T̂N o operador de energia ciné-
tica nuclear, Mα a massa do núcleo α localizado
na posição Rα, V̂ee o operador de energia poten-
cial repulsiva elétron–elétron, V̂NN o operador de
energia potencial repulsiva núcleo–núcleo, e V̂Ne o
operador referente à atração elétron–núcleo (tam-
bém interpretado como o potencial “externo” atu-
ando sobre os elétrons). As somas em i e j per-
correm todos os elétrons, enquanto as somas em
α e β abrangem todos os núcleos. Ao escrevermos
este Hamiltoniano, omitimos correções relativís-
ticas. O termo coulombiano de interação entre
elétrons introduz complicações significativas na
determinação de soluções exatas, o que levou Har-
tree a desenvolver o conhecido método autocon-
sistente como alternativa numérica viável. É im-
portante destacar que, mesmo nesse formalismo,
outras aproximações são frequentemente necessá-
rias para tornar o problema tratável. Na prática,

1O Hamiltoniano está escrito utilizando o sistema de
unidades atômicas.

muitas vezes o sistema é reduzido ao problema
eletrônico, o que se justifica pelo fato de que, em
diversas situações, é possível aplicar a conhecida
aproximação de Born–Oppenheimer, ou aproxi-
mação adiabática [7, 23].

A proposta central de aproximação para so-
lução da equação de Schrödinger na teoria de
Hartree consiste em aproximar a interação en-
tre os elétrons por meio de um campo médio ge-
rado pelos outros N − 1 elétrons que atuam so-
bre cada partícula. Dessa forma, o movimento
de cada elétron passa a ser descrito por uma
equação de Schrödinger de partícula única. A
condição de autoconsistência entre a distribui-
ção de carga eletrônica e o campo eletrostático
que ela própria gera resulta em um conjunto de
equações integro-diferenciais acopladas, conheci-
das como equações de Hartree, aplicáveis às N
funções de onda de partícula única. Essas equa-
ções correspondem à otimização de uma função
de onda aproximada escrita como o produto dos
orbitais eletrônicos, denominado produto de Har-
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tree [7,21]. Tal produto, no entanto, não satisfaz
o princípio de exclusão de Pauli. Foi apenas em
1930 que Fock [22] apresentou cálculos baseados
em funções de onda devidamente antissimetriza-
das, formuladas na forma do conhecido determi-
nante de Slater [19]. Esse formalismo passou a ser
conhecido como o método de Hartree-Fock (HF).
A evolução das ideias de se obter soluções dire-
tas da equação de Schrödinger utilizando méto-
dos aproximativos para solução de muitos corpos
continua até hoje. Existem diferentes metodolo-
gias para aumentar a precisão dos cálculos obti-
dos por essa abordagem, embora sejam, em geral,
computacionalmente muito custosas a depender
do número de átomos do sistema [24].

O estudo de sistemas periódicos ganhou des-
taque a partir de 1929, quando Felix Bloch de-
senvolveu a teoria quântica dos sólidos [25]. Na
mesma época, Thomas e Fermi, independente-
mente, propuseram métodos para calcular a ener-
gia eletrônica de determinados sistemas a partir
da densidade eletrônica [7, 26–28]. Estas são se-
mentes que deram origem a uma das teorias mais
utilizadas pela ciência, a Teoria do Funcional da
Densidade (DFT, do inglês Density Functional
Theory) [29, 30].

O principal protagonista no desenvolvimento
da DFT foi o físico teórico Walter Kohn, nas-
cido em 1923, dois anos antes das bases da mecâ-
nica quântica serem estabelecidas. Aos 42 anos de
idade, Kohn já havia desenvolvido uma das teo-
rias mais influentes da história da ciência [31–33].
Walter Kohn foi agraciado com o Prêmio No-
bel de Química de 1998 pelo desenvolvimento da
DFT, em conjunto com John A. Pople, reconhe-
cido por suas contribuições ao avanço de méto-
dos computacionais em química quântica [34,35].
Pople destacou-se como um dos principais de-
senvolvedores do software Gaussian e, segundo
o próprio Kohn, levou algum tempo até aceitar
e incorporar a DFT nesse programa [36, 37]. A
DFT fundamenta-se em dois teoremas publica-
dos por Walter Kohn, em colaboração com Pierre
Hohenberg, em 1964, e nas célebres equações de
Kohn-Sham, apresentadas em 1965 em parceria
com Lu-Jeu Sham, então pós-doutorando sob a
supervisão de Kohn [31]. Detalhes da teoria se-
rão apresentados na Seção 2. No ano em que a
mecânica quântica completa o seu centenário, a
DFT celebra, então, mais de seis décadas de exis-

tência, consolidando-se como um dos marcos mais
relevantes da física e da química teóricas.

A Figura 1 mostra a evolução anual do nú-
mero de citações dos artigos de Hohenberg e Kohn
(1964), Kohn e Sham (1965) e Perdew et al.
(1996) [29, 30, 33, 38, 39]. Em 2014, os artigos
que fundamentaram a DFT figuravam entre os
100 trabalhos mais citados da história da ciência,
juntamente com artigos centrais para sua imple-
mentação prática no estudo de átomos, moléculas
e sólidos [29, 30, 32, 40–49]. Em 2023, essa posi-
ção de destaque permanece, com ênfase especial
no trabalho de John P. Perdew, Kieron Burke e
Matthias Ernzerhof [38], que figura na quarta po-
sição entre os artigos mais citados, juntamente
com outras metodologias implementadas para a
aplicação da DFT. [33,39,41,42,44,45,47].

Isso evidencia a relevância científica que essa
área de pesquisa, dentro da mecânica quântica,
desenvolveu ao longo dos anos. Atualmente, a
DFT é utilizada de maneira interdisciplinar em
diferentes campos do conhecimento. Uma con-
sulta na base Web of Science, considerando as
citações aos trabalhos de Walter Kohn, Perdew e
outros, revela a diversidade de áreas que adota-
ram a DFT como modelo unificado para a des-
crição teórica de problemas envolvendo matéria
condensada. As principais citações nos trabalhos
fundamentais da DFT [29, 30, 38] mostram gran-
des áreas como Física, Química, Ciência dos Ma-
teriais, Engenharia e Metalurgia (ver Figura 2).
Entretanto, observa-se também a crescente pre-
sença da teoria em áreas como Mineralogia, Far-
macologia, Astronomia e Astrofísica. Além disso,
começam a surgir referências em campos relacio-
nados à saúde, demonstrando o alcance cada vez
mais amplo da DFT.

Todo esse sucesso está fundamentado na qua-
lidade dos resultados proporcionados pela DFT
na modelagem de sistemas, bem como em sua ca-
pacidade de estabelecer um diálogo direto com
a pesquisa experimental. A modelagem teórica
baseada em DFT transformou de maneira signi-
ficativa a compreensão da natureza e a condu-
ção das investigações na área de estrutura eletrô-
nica. Marvin Cohen, professor da Universidade
da Califórnia, em Berkeley, destacou-se como um
dos principais responsáveis por revolucionar o uso
da teoria e da simulação na previsão de novos
materiais, tendo realizado as descobertas teóri-
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Figura 1: Evolução anual do número de citações dos artigos de Hohenberg e Kohn (1964), Kohn e Sham (1965) e Perdew
et al. (1996). Enquanto os dois primeiros apresentam crescimento consistente, o trabalho de Perdew (PBE) mostra
aumento muito mais acentuado, alcançando em 2023 a 4ª posição entre os artigos mais citados da ciência [29,30,33,38,39].

cas dos nanotubos de nitreto de boro e parti-
cipado ativamente da proposta de síntese desse
material em colaboração com pesquisadores ex-
perimentais [50–53]. Pesquisadores como Cohen
e colaboradores desempenharam um papel fun-
damental na formação de uma geração de cien-
tistas dedicados à pesquisa em teoria e simulação
de materiais, bem como à física da matéria con-
densada. Essa comunidade científica consolidada
constitui, atualmente, um dos motores potenci-
ais para revoluções científicas e tecnológicas, além
de representar um terreno fértil para descobertas
em um contexto no qual a inteligência artificial
assume crescente relevância disruptiva.

O sucesso da DFT decorre de características
importantes que podem ser aplicadas em diferen-
tes contextos de descobertas científicas [54]. A

exploração e a previsão de situações experimen-
tais de difícil execução ou, muitas vezes, impossí-
veis são avaliadas pela DFT de maneira simples,
permitindo, assim, investigar o comportamento
de sistemas em diversos contextos laboratoriais.
Por exemplo, é possível estudar sistemas sob con-
dições de temperatura e pressão atualmente inal-
cançáveis do ponto de vista experimental. De ou-
tra forma, é possível prever o comportamento de
sistemas atômicos em situações de pressão e tem-
peratura como as existentes no centro da Terra
ou de uma estrela [55, 56]. Além disso, a DFT
permite um controle rigoroso das condições de si-
mulação, de forma que é possível estudar e prever,
por exemplo, o comportamento preciso da substi-
tuição de um único átomo por espécies distintas
em um material 2D ou cristalino, permitindo o
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Figura 2: Nuvem de palavras representando a frequência de publicações diferentes áreas de pesquisa das Categorias da
Web of Science que citam o artigo de Perdew et. al. [38]. O tamanho das palavras indica a relevância relativa da área,
enquanto a variação de cores, no mapa viridis, representa a frequência de citações nas publicações.

controle e o entendimento preciso de suas propri-
edades [57]. Também é possível desvendar os me-
canismos de reações químicas de formação de mo-
léculas orgânicas nitrogenadas, como as do DNA
e do RNA, no espaço interestelar, fornecendo in-
formações valiosas sobre como surgiu a vida na
Terra [58].

Os fenômenos quânticos emergentes e exóticos
podem ser descobertos por meio de investigações
minuciosas utilizando simulações com DFT. No-
vos fenômenos e propriedades tunáveis de materi-
ais muitas vezes permanecem ocultos a uma aná-
lise puramente teórica ou experimental, e o uso
dessa metodologia pode atuar como motor de no-
vas descobertas [59]. O custo associado a novas
descobertas é sempre elevado, e a simulação com-
putacional permite, de certa forma, reduzir os
custos operacionais envolvidos. A DFT pode ser
utilizada para fins específicos, como a diminuição
do processo de tentativa e erro nos laboratórios.
Nesse sentido, o uso de algoritmos inteligentes em
conjunto com a DFT possibilita uma aceleração
de descobertas até então inimaginável.

O emprego de aprendizado de máquina ou de
algoritmos evolutivos tem transformado a ma-
neira como a pesquisa com DFT é conduzida e
como a descoberta de novos materiais e molécu-
las é realizada [60–62]. Não por acaso, o Prêmio
Nobel de Física de 2024 foi concedido a Geoffrey
Hinton e John J. Hopfield pelas descobertas e in-
venções fundamentais que possibilitam o apren-
dizado de máquina com redes neurais artificiais,
enquanto o Prêmio Nobel de Química de 2024 foi
concedido a David Baker, Demis Hassabis e John
Jumper pelo design computacional de proteínas e
pela previsão de sua estrutura [63,64]. Esses prê-
mios destacam como o aprendizado de máquina
e o design computacional estão transformando a
ciência, assim como a DFT. Esses novos métodos
híbridos de DFT com algoritmos inteligentes têm
alavancado a descoberta de novos materiais cris-
talinos, novos supercondutores e materiais 2D,
com propriedades específicas e desejadas. Além
disso, para acelerar esse processo de descobertas,
a DFT pode ser utilizada como ferramenta para
o desenvolvimento de bancos de dados destinados
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ao treinamento e à parametrização de novos po-
tenciais, com fins específicos voltados tanto para
a descoberta de novos materiais quanto para a
descrição de propriedades de sistemas cuja simu-
lação apresenta alto custo computacional. Méto-
dos como dinâmica molecular podem, então, ser
utilizados com base nesses potenciais [65–69].

Os métodos de estrutura eletrônica tornaram-
se cada vez mais sofisticados na busca por uma
descrição tanto qualitativa quanto quantitativa
de resultados que possam ser comparados com
experimentos. Apesar de seu sucesso notável, a
DFT não é uma teoria universal e ainda não con-
segue descrever adequadamente todas as proprie-
dades de sistemas atômicos, tornando a compara-
ção com resultados experimentais, em certos ca-
sos, inviável. É o que ocorre, por exemplo, na
descrição de sistemas fortemente correlacionados
e na caracterização de propriedades ópticas de
materiais com excitações de quasipartículas.

Dessa forma, novos métodos além da DFT têm
surgido e evoluído. Os métodos de perturbação
de muitos corpos são um exemplo notável. A des-
crição das propriedades ópticas de diversos mate-
riais avançou consideravelmente graças ao desen-
volvimento e à implementação de técnicas per-
turbativas por pesquisadores como Steven Louie,
utilizando abordagens conhecidas como GW e
Bethe-Salpeter (GW-BSE) [70–73]. No caso de
sistemas fortemente correlacionados, destaca-se o
surgimento da Teoria Dinâmica do Campo Médio
(DMFT, do inglês Dynamical Mean-Field The-
ory) [74, 75].

Apresentaremos, nas próximas seções, detalhes
do que foi descrito acima. Inicialmente, discuti-
remos a DFT como uma teoria fundamental no
desenvolvimento da Mecânica Quântica aplicada
para sistemas atômicos, apresentando seus princi-
pais conceitos e aproximações. Em seguida, abor-
daremos aspectos relevantes da teoria de pertur-
bação de muitos corpos. Posteriormente, apre-
sentaremos aplicações da DFT em diferentes con-
textos, destacando como essa metodologia pode
auxiliar na identificação de compostos intereste-
lares e como pode ser utilizada em conjunto com
métodos inteligentes para o design de novos ma-
teriais.

2 Teoria do funcional da densidade
(DFT): conceitos básicos

Na teoria quântica, a função de onda eletrônica
total Ψ, que é solução da equação de Schrödin-
ger eletrônica independente do tempo, dependerá
das posições de todos os N elétrons de um sis-
tema atômico e, portanto, será uma função de 3N
variáveis. Devido ao termo de repulsão elétron-
elétron, este problema de 3N variáveis é insolúvel
analiticamente, e o que a DFT faz é substituir
este problema insolúvel de 3N variáveis por um
problema de apenas 3 variáveis, que estarão rela-
cionadas à densidade eletrônica ρ(r) do sistema
no espaço.

O que pode ser medido experimentalmente na
mecânica quântica, devido à sua interpretação es-
tatística, é o valor esperado, i.e. valor médio,
de um conjunto de medições de um observável O
considerando sistemas quânticos igualmente pre-
parados. O valor esperado do observável é escrito
na notação de Dirac como

⟨O⟩Ψ = ⟨Ψ|Ô|Ψ⟩ . (2)

Se o observável medido for relacionado a uma
variável contínua, como o momento p ou posição
x, seu valor esperado será representado pela
integral de Ψ(r)∗ÔΨ(r). Se este for relacionado a
uma variável discreta, como o momento angular
do elétron em átomos isolados, então será repre-
sentado por um produto entre vetores (estados)
e matrizes (observáveis), do tipo Ψ†OΨ. Já na
DFT, esse valor esperado do observável poderá
ser obtido pelo cálculo de um funcional para a
densidade eletrônica do sistema O[ρ(r)].

O que é um Funcional?

Um funcional é uma função que tem como ar-
gumento uma outra função e que exprime um
escalar como saída. Na DFT, um observável
físico é um funcional da densidade eletrônica
ρ(r).

Um funcional de grande importância na DFT
é o da energia total do sistema. Sendo que tal
importância se dá pelo fato de que este é utili-
zado para minimizar a densidade eletrônica total.
Neste funcional, são contidos termos relaciona-
dos à energia cinética dos elétrons, ao potencial
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eletrostático gerado pelos núcleos, às interações
entre elétrons e ao termo de troca-correlação.

2.1 Teoremas de Hohenberg-Kohn

Todo o desenvolvimento da DFT e todas as
suas implementações são respaldados em dois teo-
remas fundamentais, deduzidos em 1964 e que são
chamados teoremas de Hohenberg-Kohn (HK)
[29]. Tais teoremas, que serão apresentados a
seguir, impressionam pela simplicidade de suas
provas matemáticas em contraste com suas con-
sequências. Assim, os enunciamos:

Teorema 1 Para qualquer sistema de partículas
interagentes na influência de um potencial ex-
terno v(r), a densidade eletrônica ρ(r), a menos
de uma constante, é unicamente determinada.

Teorema 2 Um funcional universal E[ρ] pode
ser definido em termos da densidade, e o es-
tado fundamental exato do sistema quântico cor-
responde ao mínimo global deste funcional.

O primeiro teorema pode ser provado por re-
ductio ad absurdum ao utilizar o princípio da
mínima energia e assumir que dois potenciais
externos distintos podem levar a uma mesma
densidade eletrônica. Como resultado, este te-
orema nos mostra que, no contexto de sistemas
atômicos, o potencial externo v(r) sentido pelos
elétrons, que corresponde às interações dos nú-
cleos com os elétrons e a outras interações não-
coulombianas, define unicamente a densidade ele-
trônica do sistema; ou seja, estabelece uma rela-
ção um-para-um entre a densidade e o potencial
externo. Como o número de elétrons N é deter-
minado pela densidade eletrônica do estado fun-
damental ∫

ρ(r) d3r = N, (3)

então ρ0(r) também determina a função de onda
total do estado fundamental Ψ0. Deste modo,
todas as propriedades eletrônicas do sistema são
determinadas também por ρ0(r), ou seja, o pri-
meiro teorema também garante que podemos es-
crever o valor esperado de qualquer observável Ô
como um funcional de ρ0(r)

O segundo teorema pode ser provado de ma-
neira simples utilizando o princípio variacional e

estabelece que, se pudermos construir um funci-
onal exato para a energia eletrônica, seu mínimo
global será obtido somente se for utilizada a den-
sidade eletrônica do estado fundamental. Assim,
a minimização da energia do sistema corresponde
à busca pela densidade do estado fundamental
ρ0(r). Em outras palavras, este teorema estabe-
lece que a busca pelo estado fundamental de um
sistema pode ser realizada pela busca do mínimo
global do funcional de energia, e este deve levar
ao exato mesmo resultado que seria obtido pela
resolução da equação de Schrödinger.

Embora em muitos dos problemas de interesse
os teoremas HK sejam aplicáveis, existem algu-
mas situações em que estes falham, como, por
exemplo, caso o Hamiltoniano possua mais de
duas funções de onda do estado fundamental de-
generadas. De modo geral, a formulação origi-
nal de HK falha se a densidade for dita não v-
representável, ou seja, se a densidade do estado
fundamental não for relacionada a um Hamilto-
niano com um potencial externo v(r). Dado este
problema, Lieb e Levy [76, 77] construíram, in-
dependentemente, um algoritmo de minimização
que requeria apenas que as densidades fossem N -
representáveis, ou seja, se pudessem ser obtidas
a partir de uma função de onda antissimétrica
de N elétrons. A N -representabilidade é garan-
tida se as próximas três condições forem atingi-
das [76, 78]:

ρ(r) ≥ 0, (4)∫
ρ(r) d3r = N, (5)∫

|∇ρ1/2(r)|2 d3r <∞. (6)

A última condição garante que a raiz da densi-
dade eletrônica, assim como seu gradiente, per-
tença ao espaço de Hilbert das funções complexas
quadrado integráveis L2(R3), ou seja, n1/2 ∈ H1

e também que a energia cinética do sistema será
finita.

Assim, a ideia do algoritmo de Lieb-Levy é
procurar por todas as funções de onda antissi-
métricas que formam ρ0 e minimizam o valor es-
perado do chamado funcional universal F [ρ] =
⟨Ψ| T̂ + V̂ee |Ψ⟩, e depois minimizar o funcional
de energia total em relação à densidade eletrô-
nica [79] (ver eq. 7).

Por fim, os teoremas de HK e o algoritmo de
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busca de Lieb-Levy garantem que, para qualquer
sistema eletrônico, a densidade eletrônica retorna
as mesmas informações que a função de onda
exata do sistema e, portanto, podemos mudar o
foco da determinação de Ψ para a determinação
de ρ, com a única restrição sendo que a densi-
dade eletrônica deva ser N -representável. Tam-
bém, vemos que a obtenção da densidade eletrô-
nica do estado fundamental é possível a partir da
minimização do funcional de energia total [76,77]:

E0 = min
ρ

{
min
Ψ−→ρ

[
⟨Ψ| T̂ + V̂ee |Ψ⟩

+

∫
v(r)ρ(r) d3r

]}
. (7)

2.2 Equações de Kohn-Sham

Embora os teoremas de HK evidenciem que a
minimização da energia total leva à densidade ele-
trônica do estado fundamental, estes não mos-
tram como esta minimização pode ser feita. Por
esta razão, em 1965, um ano depois da apresenta-
ção dos teoremas de HK, Walter Kohn e Lu Jeu
Sham [30] apresentaram um sistema de equações
que seria capaz de realizar tal minimização.

Para realizar a minimização, foram introduzi-
dos orbitais ao problema por definir a densidade
como uma soma do tipo

ρ(r) =

N∑
i

ni|ϕi(r)|2, (8)

em que N é o número de elétrons, ni é o número
de ocupação do orbital, sendo igual a 1 para os
N primeiros orbitais e 0 para os demais (T = 0
K), o que é dado pelo princípio da exclusão deo
que satisfaz o postulado Pauli. Kohn e Sham de-
finiram depois um fator de energia cinética como
soma dos valores esperados destes orbitais

Ts[ρ] =
N∑
i

⟨ϕi| −
1

2
∇2 |ϕi⟩ , (9)

e a engenhosidade por trás destas definições re-
side no fato de que estas são exatas para qualquer
sistema de elétrons não-interagentes. Tal sistema
não interagente é de interesse pois pode ser resol-
vido numericamente e analiticamente.

Sabendo como a densidade e a energia cinética
do sistema não interagente podem ser escritas,
Kohn e Sham levantaram a questão sobre se seria
possível encontrar a densidade eletrônica de um
sistema interagente a partir de um sistema não in-
teragente. Para tentar responder a essa questão,
os autores consideram um funcional de energia
total do tipo

E[ρ] = Ts[ρ] + EH [ρ] + Exc[ρ], (10)

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− EH [ρ], (11)

em que EH e Exc são, respectivamente, a ener-
gia de Hartree e a energia de troca-correlação (do
inglês, exchange-correlation). A energia de Har-
tree representa a interação clássica de repulsão
Coulombiana entre elétrons, dada pela equação

EH [ρ] =

∫
ρ(r)ρ(r

′
)

|r− r′ |
drdr

′
, (12)

em que é notável que há um acréscimo de energia
de auto-interação não física para r próximo de r

′ .
Já o termo de troca-correlação possui todas as
interações não clássicas do sistema de elétrons, a
diferença entre a energia cinética do sistema não
interagente e a do sistema interagente e a correção
para a auto-interação do termo de Hartree, sendo
o termo de maior importância para os cálculos
da DFT, sendo também onde residem as aproxi-
mações da teoria. O termo Exc e suas aproxi-
mações serão abordadas mais profundamente na
seção 2.3.

Pode-se minimizar o funcional (10) utilizando
o método dos multiplicadores de Lagrange e to-
mando como vínculo a ortonormalidade dos or-
bitais

∫
ϕ∗i (r)ϕj(r) d

3r = δij . Neste caso, a mi-
nimização pode ser realizada em relação à ϕ∗i , e
realizando as derivadas funcionais dos termos que
compõem o Hamiltoniano, é possível obter as cha-
madas equações de Kohn-Sham (KS){

− 1

2
∇2 + veff (r)

}
ϕi(r) = εiϕi(r), (13)

em que veff (r) é a derivada funcional do potencial
de interação elétron-elétron EH [ρ] + Exc[ρ] e do
potencial externo. Estas representam, portanto,
um potencial efetivo dos núcleos e elétrons que
englobam o orbital. Aqui, denominamos também
εi e ϕi como, respectivamente, os autovalores e
orbitais de KS.
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A partir das equações de KS, é possível reescre-
ver o funcional de energia total do sistema como
a soma dos N autovalores εi e do funcional da
energia de troca-correlação, subtraídos do poten-
cial de Hartree e da integral da derivada funcional
do potencial de troca-correlação vxc multiplicado
pela densidade eletrônica

E[ρ] =

N∑
i

εi −
1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr dr′

+ Exc[ρ]−
∫
vxc(r)ρ(r) dr. (14)

Neste momento, o leitor pode se perguntar a
respeito da interpretação física para ϕi e εi, uma
vez que estes partem de equações do tipo equa-
ção de Schrödinger para um sistema de elétrons
não interagentes e também porque os autovalo-
res aparecem no funcional de energia total, e a
resposta para tal pergunta é simples: não exis-
tem interpretações diretas para estes termos, de
modo que são apenas parte de uma construção
matemática para realizar a minimização do sis-
tema. Entretanto, há apenas uma exceção para
isto, que ocorre apenas para o último autova-
lor (εN ≡ εHOMO) referente ao mais alto orbital
ocupado (em inglês, “Highest Occupied Molecu-
lar Orbital”), onde, pelo teorema de Janak [80], é
possível mostrar que εHOMO é precisamente igual
à energia de ionização do sistema. Tal signifi-
cado também aparece no modelo de HF, onde
é provado e referenciado pelo teorema de Koop-
mans [81]. Além disso, outras quantidades físicas
podem ser derivadas diretamente da DFT, como
o potencial químico µ no limite de temperatura
tendendo a zero, que seria exatamente a derivada
funcional de energia total em relação à densidade
eletrônica, e que representa a tendência de escape
da nuvem de elétrons, e está relacionada ao ne-
gativo da eletronegatividade [79] e as funções de
Fukui [82], que estão relacionadas à remoção, ou
adição, de elétrons no sistema, sendo útil na aná-
lise da reatividade de moléculas.

Uma vez obtidas as equações de KS e conhe-
cendo o formato dos funcionais que compõem a
energia total, o método proposto para a minimi-
zação é pelo chamado ciclo auto-consistente. (ver
fig. 3). Tal ciclo é necessário visto que o poten-
cial efetivo de KS veff por si só é um funcional da
densidade eletrônica, e o mesmo é necessário para

a resolução das equações que fornecem os orbitais
de KS necessários para a construção da densidade
eletrônica. Assim, a ideia é propor uma densidade
eletrônica inicial por alguma aproximação, como
uma pela superposição das densidades de carga
atômicas, resolver a equação de KS e verificar um
critério de convergência para a densidade eletrô-
nica. Tal metodologia não é exclusiva da DFT e
segue a mesma ideia proposta, em 1951, por C.
C. J. Roothaan [83], onde foi estabelecido que os
orbitais moleculares das equações de HF fossem
expandidos como uma combinação linear dos or-
bitais atômicos (LCAO). Esta expansão é usada
para transformar as equações integro-diferenciais
acopladas obtidas no modelo de HF em um pro-
blema de diagonalização matricial, simplificando
a implementação computacional e possibilitando
que o mínimo do sistema seja encontrado pela
minimização auto-consistente dos coeficientes da
expansão. Ainda, é interessante notar que o mé-
todo auto-consistente de KS funciona justamente
porque as equações de KS são equivalentes à mi-
nimização da energia total do sistema.

2.3 Funcional de troca-correlação

Em um sistema atômico, a energia de troca está
relacionada ao fato de que elétrons são férmions
e, portanto, possuem função de onda antissimé-
trica. No HF, tal efeito é completamente consi-
derado, visto que um determinante de Slater do
estado fundamental é utilizado. Assim, é defi-
nida a correlação eletrônica como todos os efeitos
não-clássicos desconsiderados pelo modelo de HF

Ecorr = E0 − EHF . (15)

Existem alguns métodos de função de onda pós-
HF que visam recuperar a energia de correlação
por considerar não apenas um determinante de
Slater, mas uma combinação linear de vários de-
terminantes de Slater que representariam estados
excitados do sistema. Neste contexto, surge o mé-
todo da Interação de Configurações, que busca
construir uma função de teste considerando tal
combinação, e que recupera exatamente a cor-
relação eletrônica (full -CI) [84]. Entretanto, tal
exatidão vem com uma implementação complexa
e custo computacional elevado, impedindo sua
completa utilização. Por este motivo, várias apro-
ximações e métodos voltados a recuperar parte da
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correlação obtida de forma exata foram desenvol-
vidas e, dentre eles, alguns utilizam como base a
teoria de perturbação utilizando a separação de
Møller-Plesset (MPPT) [85] e a teoria da pertur-
bação de muitos corpos (MBPT(n)), baseada na
teoria de Rayleigh-Schrödinger [86,87], enquanto
outras apresentam aproximações ao chamado mé-
todo Coupled Clusters [88, 89], que separa o pro-
blema de muitos elétrons em agrupamentos de
elétrons interagindo entre si, e que, até certo li-
mite, é capaz de recuperar a correlação de ma-
neira suficientemente exata. Entretanto, vale no-
tar que todos estes métodos são mais custosos que
a DFT e, portanto, têm suas aplicações restritas
a sistemas moleculares menores.

Já no contexto da DFT, como definido na seção
anterior, o funcional de troca-correlação introduz
todas as interações não-clássicas dos elétrons, a
correção para sua energia cinética e a correção
para a auto-interação do termo de Hartree. De
fato, embora os teoremas de HK garantam que
a DFT seja exata em teoria, na prática, são ne-
cessárias aproximações para o termo Exc, e estas
ditam o quão “exata” é a teoria. Assim, enquanto
a melhora dos métodos de função de onda con-
siste na incorporação de mais determinantes de
Slater como entrada para a minimização, o que
aumenta extremamente o custo computacional, a
melhora da DFT, cujas equações de KS são si-
milares às do HF, consiste na busca de melhores
aproximações para o termo de troca-correlação, o
que, a princípio, não deve aumentar tanto o custo
computacional [90].

Até os dias atuais, ainda não existe um funci-
onal que leve à energia de troca-correlação exata
para o sistema. Entretanto, a forma exata para
um funcional de troca-correlação é conhecida teo-
ricamente e foi proposta por Harris [91] em 1984,
sendo chamada de conexão adiabática. Nesta for-
mulação, definimos o Hamiltoniano total em fun-
ção de uma constante de acoplamento λ ∈ [0, 1]
tal que λ = 0 representa um sistema não intera-
gente e λ = 1 representa um sistema completa-
mente interagente, e escrevemos [92]

Ĥ(λ) = T̂ + λV̂ee +

∫
uextλ (r)n̂(r) d3r, (16)

onde uextλ é o potencial externo em função de λ.
Para λ = 0, recaímos no potencial externo do
sistema não-interagente, enquanto para λ = 1,

recaímos no potencial externo do sistema comple-
tamente interagente vext(r). O mesmo significado
do potencial externo em função de λ é dado para o
Hamiltoniano em função de λ. Agora, a ideia é re-
escrever, com o auxílio do teorema de Hellmann-
Feynman, a energia do estado fundamental para
os extremos de λ, e usar essas energias para re-
escrever o funcional de troca-correlação [79, 92].
Então, é possível mostrar que

Exc[n(r)] =
1

2

∫
d3r n(r)

∫
d3r

′
vee hxc(r, r

′
),

(17)
onde gλ(r, r

′
) é um funcional único de n(r), e

hxc(r, r
′
) é o chamado buraco de troca-correlação:

hxc(r, r
′
) = n(r

′
)

∫ 1

0
[gλ(r, r

′
)− 1] dλ, (18)

o qual representa a região próxima ao elétron na
qual a probabilidade de se encontrar outro elétron
é próxima de zero, seja pelo princípio de exclu-
são de Pauli (troca), de caráter mais localizado,
seja pelos efeitos de repulsão coulombiana (cor-
relação). Podemos decompor o buraco de troca-
correlação em dois: o buraco de Fermi, associado
à troca, e o buraco de Coulomb, associado à corre-
lação, de modo que a energia de troca-correlação
corresponda à energia de interação entre os elé-
trons do sistema e esses dois buracos.

Se conhecêssemos exatamente hxc, poderíamos
resolver exatamente as equações de KS e obter a
energia exata do estado fundamental. E, embora
talvez não seja possível encontrar o funcional hxc,
as características deste nos ajudam a encontrar
aproximações mais acuradas para o funcional de
troca-correlação.

Uma primeira aproximação para Exc é cha-
mada de Local Density Approximation (LDA), e
consiste em tratar os elétrons do sistema como
um gás homogêneo de elétrons. Dentre este for-
malismo, podemos tratar a energia de troca e cor-
relação no espaço das frequências, que possui uma
função resposta bem definida para o gás de elé-
trons. A energia de troca é dada pela função de
Lindhard [93] e pode ser escrita em termos de
funções de Green de uma partícula, de modo que
é possível obter

ELDA
x (n) = −3(3π2)1/3

4π
e2n4/3, (19)

que é o resultado da aproximação de Thomas-
Fermi-Dirac [84,94]. O termo de correlação pode
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Densidade inicial
n(0)(r)

Construir potencial de KS
veff [n

(k)(r)]

Resolver equações de KS
[Ts + veff (r)]ϕi(r) = εiϕi(r)

Calcular nova densidade
n(k+1)(r) =

∑
i |ϕi(r)|2

Testar auto-consistência
|n(k+1) − n(k)| < δ

Cálculo de propriedades físicas

Não

Sim

Figura 3: Fluxograma do ciclo auto-consistente da DFT.

ser obtido nos regimes de alta e baixa densi-
dade, por meio da Random Phase Approximation
(RPA) [95, 96] e uma interpolação para o regime
intermediário pode ser feita por meio de cálculos
de Monte Carlo quântico [97]. O LDA tende a
ser bem aplicável a sistemas com propriedades se-
melhantes às do gás de elétrons livres, como, por
exemplo, materiais metálicos, mas pode falhar em
cálculos de estabilidade para íons negativos [92]
e para outros sistemas. Em geral, esta aproxi-
mação subestima o termo de troca, enquanto so-
brestima o termo de correlação, o que pode levar
a um cancelamento de erros, tendendo a garantir
bons resultados qualitativos e quantitativos para
alguns sistemas não homogêneos.

O LDA pode ser generalizado para sistemas
com polarização de spin, no que é conhecido como
Local Spin Density Approximation (LSDA), com
a energia de troca sendo uma soma da energia
de troca do caso não-polarizado, considerando as
densidades de spin up e down do sistema [92]. Já
o termo de correlação nesta aproximação é geral-
mente escrito em função da fração de polarização

ζ =
n↑ − n↓

n↑ + n↓
, (20)

com a densidade de energia de correlação sendo
não-linear com ζ, e com a utilização de simula-
ções de Monte Carlo Quântico para a obtenção
da expressão desta densidade.

Outra aproximação comum é a Generalized
Gradient Approximation (GGA), e tem como
ideia usar não somente a densidade eletrônica
para o cálculo da energia, mas também o gradi-
ente da mesma, de modo que a energia de troca-
correlação total tem uma forma geral

EGGA
xc [n(r)] =

∫
f(n(r),∇n(r)). (21)

Existem várias implementações do GGA com di-
ferentes formatos para f(n(r),∇n(r)), sendo no-
tável que uma das mais conhecidas, e utilizadas, é
a formulação proposta por Perdew, Burke e Erze-
nhof, abreviada pela sigla PBE [38]. Além disso,
vários outros tipos de funcionais foram criados
ao longo dos anos, como o Meta-GGA, que adi-
ciona uma dependência de ∇2n em f [98, 99], e
também como os funcionais híbridos, que utili-
zam o método de HF, que possui energia de troca
exata, para calcular parte desta contribuição na
DFT [100,101].

Na DFT, as aproximações mais utilizadas para
o potencial de troca e correlação são locais e, por
construção, não levam em conta as interações de
longo alcance do tipo van der Waals (vdW), que
constituem um fenômeno de correlação não local
de origem puramente quântica. As primeiras ten-
tativas de correção desse efeito recorreram a tra-
tamentos semi-empíricos, nos quais se empregava
uma função de corte para pequenas distâncias, a
qual tende a um para valores grandes de distância
(∝ −f(R)C6R

−6) [102–105]. Nos últimos anos,
entretanto, surgiram diversas propostas de fun-
cionais de densidade para vdW (vdW-DF), que
incorporam essa interação a partir de primeiros
princípios [106–109].

2.4 Teoria de muitos corpos: o método
GW

A discussão precedente leva a um impasse. Ela
mostra o DFT como um método formalmente
exato e computacionalmente eficiente para o
tratamento do sistema eletrônico. Contudo, a
implementação prática exige o conhecimento
do funcional de troca-correlação, que não é
conhecido exatamente e para o qual são feitas
aproximações. Essas aproximações acarretam
problemas na comparação dos resultados dos
cálculos com dados experimentais, especialmente
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em sistemas fortemente correlacionados e em
propriedades relacionados ao gap de energia,
como em medidas ópticas. Para entender o
problema, lembramos que a interação de troca é
oriunda de um postulado da mecânica quântica
que diz que a função de onda total em um
sistema multieletrônico deve ser antissimétrica.
Em um método como o Hartree-Fock, no qual a
função de onda é escrita como um determinante
de Slater, o postulado é satisfeito e o termo de
troca fica descrito exatamente.

Assim, no método HF, dois termos dizem
respeito à interação entre elétrons: além do po-
tencial de troca, há o termo de Hartree, idêntico
ao presente nas equações de KS do DFT. O
ponto fundamental aqui é que a integral que
representa o termo de Hartree inclui a chamada
auto-interação, que é espúria, uma vez que um
elétron não interage consigo mesmo, apenas com
os demais. Mas isso não é problema se o termo de
troca é exato, como no HF: a integral que repre-
senta o termo de troca inclui contribuições que
cancelam exatamente essa auto-interação. O que
ocorre se o termo de troca é aproximado, como
no DFT? A falta de cancelamento exato faz com
que exista auto-interação, e essa é a principal
fonte de problemas no método. A propósito, é
por isso que os funcionais híbridos citados na se-
ção anterior corrigem sobretudo o termo de troca.

Para contornar o problema, dentro do for-
malismo DFT, o caminho é então melhorar o
funcional de troca-correlação, o que há décadas
tem sido tentado. O uso do funcional exato de
troca traz o problema do custo computacional
- esse funcional é não-local, o que pode fazer
sistemas com um número relativamente grande
de átomos ficar intratável.

No entanto, há um outro caminho na teoria
se o objetivo for, por exemplo, a determinação
precisa de gaps de energia e propriedades ópticas.
Isso leva-nos à teoria de muitos corpos escrita em
termos do formalismo de funções de Green - um
tratamento perturbativo que culmina no método
GW, que passamos a descrever [110]. Essa teoria
foi introduzida por Lars Hedin nos anos 60 [73],
e tornada prática por M. Rohlfing and S. Louie
nos anos 80 [70,71].

As funções de Green desempenham um papel
central na física. De fato, vário processos
físicos são descritos por equações diferenciais
não-homogêneas, e as funções de Green são
fundamentais para a obtenção de uma solução
particular de uma equação desse tipo.

No contexto do problema multieletrônico, o
ponto de partida é a definição da função de Green
de muitos corpos. A partir de um estado de N
partículas, descrito pelo ket |N⟩, ela é dada por:

Gαβ(r⃗, t,r⃗
′, t′) =

− i⟨N |T [ψ̂α(r⃗, t)ψ̂
†
β(r⃗

′, t′)]|N⟩. (22)

Foram usados os operadores de campo, ψ̂ e
ψ̂†, que aniquilam e criam partículas, respecti-
vamente, e o operador de ordenamento temporal
T . Fisicamente, para t > t′, essa função descreve
a sobreposição do estado original |N⟩ com um
estado obtido quando uma partícula de spin
α é adicionada ao estado |N⟩ no tempo t′ e
no ponto r⃗′, interage com os demais elétrons,
e uma partícula de spin β é removida no
tempo t e no ponto r⃗. Se t < t′, o operador
de ordenamento temporal inverte a sequência,
e a função passa a descrever o movimento de
um buraco (partícula removida) de (r⃗, t) a (r⃗′, t′).

Quando a dependência temporal aparece no
operador, como no caso dos operadores de campo
acima, obtém-se a evolução temporal a partir
da representação de Heisenberg. Nela, tem-se
uma equação de movimento para os operadores,
como escrita abaixo para o operador de campo ψ̂,

ℏ
i

∂

∂t1
ψ̂(x1, t1) = [Ĥ, ψ̂(x1, t1)] (23)

O Hamiltioniano Ĥ inclui a interação cou-
lombiana e2/|r⃗1 − r⃗2|, e um termo Ĥ0(x1) que
reúne as contribuições que podem ser escritas
com operadores de um elétron. A variável x
reúne as coordenadas espaciais e de spin. Uma
manipulação na equação acima a transforma em
uma equação de movimento para a função de
Green G(x1, t1, x2, t2):

[
iℏ

∂

∂t1
− Ĥ0(x1)

]
G(x1, t2, x2, t2)

+i

∫
(v(x1, x3)⟨N |T [ψ̂†(x3, t1)ψ̂(x3, t1)ψ̂(x1, t1)ψ̂

†(x1, t2)]N⟩dx3

=ℏδ(x1 − x2)δ(t1 − t2). (24)
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Ora, a equação de movimento para a função
de Green contém um termo de interação no qual
aparece uma função de Green de duas partículas
(pois há dois operadores de campo de criação e
dois de aniquilação); por sua vez, a equação de
movimento para essa função envolveria a função
de Green de três partículas, e assim sucessiva-
mente, ad infinitum.

O problema pode ser resolvido com a introdu-
ção da chamada autoenergia. A ideia é mapear
a solução da série infinita de equações acopladas
acima em uma equação com a forma abaixo:[
iℏ

∂

∂t1
− Ĥ0(x1)− V (x1, t1)

]
G(x1, t2, x2, t2)

−
∫

Σ(x1, t1, x3, t3)G(x3, t3, x2, t2)dx3dt3

= ℏδ(x1 − x2)δ(t1 − t2), (25)

na qual V (x1, t1) = ϕ(x1, t1) + VH(x1, t1), isto
é, representa a soma de um potencial externo ϕ
com o potencial de Hartree. Introduz-se agora a
interação coulombiana blindada:

W (x1, t1, x2, t2) =∫
ϵ−1(x1, t1, x3, t3)v(x3, x2)δ(t3 − t2)dx3dx2,

(26)

que pode ser escrita de forma abreviada como
W = ϵ−1v, sendo ϵ a função dielétrica que ca-
racteriza os efeitos de blindagem do sistema. A
partir daí uma série de identidades são emprega-
das para se chegar a um conjunto de equações,
conhecidas como equações de Hedin, que devem
ser resolvidas iterativamente [73]. A primeira ite-
ração permite escrever a autoenergia em termos
de W e G:

Σ(x1, t1, x2, t2) =

iW0(x1, t1, x2, t2)G0(x1, t1, x2, t2), (27)

de onde o nome do método GW decorre. Em es-
sência, a autoenergia contém a informação sobre
as interações entre os elétrons, isto é, os efeitos
de troca e correlação. O formalismo leva a resul-
tados para gaps de energia em excelente acordo
com dados experimentais.

Em experimentos ópticos, o limiar de absor-
ção ocorre em energias que ficam abaixo da faixa
definida pelo gap de energia do semicondutor. A

razão é que a absorção envolve a formação de uma
quasi-partícula conhecida como éxciton, que é um
par elétron-buraco ligado. A energia de ligação do
par é fundamental para a determinação do limiar
de absorção, e pode ser da ordem de 1 eV em
sistemas de baixa dimensionalidade, como nano-
tubos de carbono. Em materiais 3D, essa energia
fica, em geral, da ordem de meV. Um formalismo
baseado nas funções de Green de duas partículas
leva à chamada Equação de Bethe-Salpeter, que
tem sido largamente empregada para a descrição
de éxcitons em materiais [72].

3 Aplicações

3.1 Moléculas Interestelares

Como apresentado nas seções anteriores, o mé-
todo DFT é muito eficiente computacionalmente
para resolver problemas de sistemas com vários
elétrons em sólidos e moléculas. Mas você pode
estar se perguntando: que relação isso pode ter
com a astronomia? Quando a gente olha para
o céu, vemos estrelas, onde a energia atinge
megaelétron-volts, o que é suficiente para arran-
car elétrons de qualquer átomo. Você tem razão:
estrelas são um tipo de plasma, e não parecem
nada com a ciência dos materiais ou a química
convencional.

Entretanto, no espaço entre as estrelas (meio
interestelar), que muita gente imagina ser um vá-
cuo perfeito, existem grãos de poeira, gelos, e mo-
léculas em fase gasosa [111]. É nesse meio que a
DFT pode nos ajudar a entender bastante sobre
astronomia. Apesar de que o meio interestelar
é ridiculamente pouco denso, ele também é ri-
diculamente grande, e por isso acaba possuindo
muita matéria. Por exemplo, na nossa galáxia,
a via láctea, as estrelas correspondem a 90% da
massa, e os 10% restante estão no meio interes-
telar [112]. Não podemos negligenciar essa parte
do espaço: ela é essencial para ciclo de vida das
estrelas. Quando esse gás contrai gravitacional-
mente é que as estrelas nascem. E quando elas
morrem, expelem matéria de novo para o meio.

Antigamente, era comum acreditar que molé-
culas não deveriam ser abundantes no espaço,
devido às condições extremas de temperatura e
a presença de radiação [113]. Entretanto, nos
últimos 20 anos, os telescopios tem detectados

Cadernos de Astronomia, vol. 6, n◦2, 110-138 (2025) 122



Teoria do funcional da densidade: fundamentos, desafios e . . . M. S. Barbosa et al.

novas espécies químicas, e hoje sabemos que
elas tem um papel importante em processos que
levam a evolução das galáxias [111]. Regiões
do espaço que pareciam escuras, podem ser
“enxergadas” usando os radioteléscopios que de-
tectam frequências específicas emitidas por certas
moléculas. Isso permite que a gente entenda
como o gás é estruturado espacialmente, além
de nos permitir saber a temperatura e pressão
dessas regiões [111]. Ou seja, moléculas funci-
onam como termômetros e barômetros do espaço.

Termômetros do espaço

Utilizando os radiotelescópios, podemos de-
tectar linhas espectrais moleculares, e inferir
a temperatura e densidade de diferentes re-
giões do espaço.

Além dos radiotelescópios, também temos te-
lescópios que permitem detectar quando molé-
culas perdem energia vibracional e emitem no
infra-vermelho. A qualidade desses dados aumen-
tou muito recentemente depois que James Webb
Space Telescope começou a operar. Ele tem nos
fornecido dados de alta resolução, e permitido es-
tudar moléculas importantes, como os hidrocar-
bonetos aromáticos policíclicos. [114,115]

A DFT pode ajudar nessa área de pesquisa de
várias maneiras: (i) simular em quais frequên-
cias essas moléculas irão emitir/absorver [116] (ii)
prever quais reações químicas poderão ocorrer en-
tre as espécies químicas presentes no espaço [117]
(iii) simular os grãos de poeira existentes no es-
paço [118]. Esses estudos complementam as ob-
servações astronômicas, e nos fornecem um en-
tendimento mais amplo sobre o meio interestelar.

Os grãos interestelares são particularmente in-
teressantes, pois fornecem um ponto de encontro
onde átomos e moléculas da fase gasosa podem
ser armazenados e reunidos por um período muito
mais longo do que seria possível no gás. Devido à
grande abundância de hidrogênio no espaço, rea-
ções de hidrogenação são comuns. Portanto, após
uma estrela morrer e expelir átomos de C, N e O
(por exemplo) eles se acumulam na superfície dos
grãos e geram moléculas como H2O, CO2, CH4,
NH3 e CH3OH [113]. De fato, essas moléculas já
foram detectadas em grãos por telescópios como

o telescópio espacial Spitzer.
O interior da maior parte destes grãos de po-

eira consiste em uma mistura de silicatos amorfos
e material carbonáceo, que retém quase 100% do
Si, Mg e Fe, 30% do oxigênio e cerca de 70% do
carbono disponível [113]. Simular computacio-
nalmente esses grãos, utilizando DFT não é uma
tarefa fácil, devido a sua característica amorfa.
[119,120]

Entre as diferentes metodologias para abordar
este problema, uma consiste no uso de aglomera-
dos moleculares, especificamente clusters de mo-
léculas de água, para simular a configuração de-
sordenada de um grão real. Como alternativa,
podem-se utilizar estruturas cristalinas periódi-
cas para aproximar o gelo astroquímico. Um mé-
todo menos comum é a utilização de células uni-
tárias amorfas em cálculos periódicos, geralmente
criadas através de dinâmica molecular em tempe-
raturas elevadas aplicadas a estruturas cristali-
nas de gelo, a fim de produzir o padrão aleató-
rio. Após obter uma estrutura que simule esses
grãos, é possível usa-la para prever a reatividade
química de diversas moléculas em sua superfí-
cie, onde cálculos DFT são novamente necessá-
rios [121].

3.2 Machine learning e algoritmos
inteligentes

Recentemente, todos os ramos da física têm
passado por uma transformação significativa im-
pulsionada pelo aumento do poder computacio-
nal e pela disponibilidade de grandes volumes de
dados, tanto experimentais como teóricos [122].
Neste contexto, machine learning (ML) e algo-
ritmos inteligentes surgem como ferramentas po-
derosas e com potencial disruptivo, capazes de
acelerar descobertas, e permitindo o aprofunda-
mento da nossa compreensão da matéria e suas
propriedades [123,124].

Machine learning é um campo da inteligência
artificial que se concentra no desenvolvimento de
algoritmos capazes de aprender e aprimorar seu
desempenho de forma automática e direta a par-
tir de dados, sem depender de programação ex-
plícita para cada tarefa específica [125]. Um dos
métodos de ML de grande destaque, as redes neu-
rais, se inspiram no funcionamento do cérebro
e em sua eficiência para detectar padrões (cor-
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relações) em dados, replicando de forma mate-
mática (e simplificada) sua estrutura: uma rede
complexa de unidades computacionais simples. A
Fig. 4 ilustra como funciona uma rede neural
(RN) artificial. Cada neurônio recebe uma série
de sinais de entrada ai vindos de outros neurô-
nios (ou dos dados iniciais, se estiver na primeira
camada) e forma uma combinação linear desses
sinais, z = w0 +

∑
wiai, onde os pesos wi re-

presentam a intensidade da conexão entre dois
neurônios específicos. Esta combinação é passada
por uma função não-linear, comumente chamada
de ativação ou não-linearidade f(z). Esta função
pode ter qualquer forma, mas tipicamente tem
o formato parecido com o ilustrado no detalhe
à direita da Fig. 4, como o da função logística
f(z) = 1/(1 − e−z), por exemplo. O processa-
mento dos sinais (computação) se dá em cama-
das, aumentando a capacidade de formar sinais
cada vez mais complexos ao longo da rede. Note
que uma rede neural pode ser vista como uma
espécie de função não-linear autorecorrente. Du-
rante o treinamento os pesos da RN são ajustados
a um conjunto de dados (experimentais ou teóri-
cos), resultando em um modelo de ML capaz de
fazer predições com base na teoria ou modelo sub-
jacente aos dados originais. Vemos, assim, que a
qualidade do conjunto de dados é fundamental
para o desenvolvimento de modelos de ML efi-
cazes. Para mais detalhes e minúcias a respeito
do processo de treinamento, arquiteturas de re-
des neurais e outros modelos de ML, como árvo-
res de decisão, referimos o leitor ao livro (acesso
livre) [125].

Perguntas ainda permanecem, no entanto. Por
que redes neurais, afinal de contas? Quais são
as vantagens de usar modelos de ML? Primeiro,
teoremas de aproximação universal garantem que
qualquer função “bem comportada” (mensurável
de Borel) pode ser aproximada por redes neurais
com número suficiente de neurônios [126]. A ca-
pacidade de representação de RNs vai além disso:
certas arquiteturas (i.e., a organização, a conexão
e a dimensão das camadas) podem representar
equações diferenciais ordinárias [127], enquanto
outras são máquinas de Turing completas [128].
Além disso, os modelos de ML apresentam uma
escalabilidade muito boa. com o tamanho do sis-
tema. Devido à localidade típica das interações
entre átomos, as RNs podem ser treinadas em

sistemas pequenos e usadas para inferência em
sistemas muito maiores [129, 130]. E finalmente,
RNs são muito eficientes nos hardwares modernos
(unidades de processamento gráficas) em termos
de custo computacional, tanto para treinamento
quanto para inferência.

De forma bem geral, os tipos de modelos de
ML usados em ciência dos materiais podem ser
divididos em duas categorias, dependendo do seu
objetivo de uso: modelos de classificação e mo-
delos substitutos ou regressores. Mais recente-
mente, modelos de processamento de linguagem
natural também vêm sendo desenvolvidos para
agregar e explorar o vasto volume de informação
presente na literatura científica existente, algo se-
melhante a um ChatGPT especializado para ciên-
cia [131,132].

Modelos de classificação têm como objetivo se-
lecionar ou filtrar materiais, moléculas ou com-
postos que sejam mais promissores para uma de-
terminada aplicação, ou seja, que tenham as me-
lhores propriedades possíveis para um problema
específico. Por exemplo, dizer quais são os possí-
veis materiais com certas composições que sejam
estáveis à temperatura ambiente e que apresen-
tem boas propriedades para aplicações em células
solares fotovoltaicas [133,134].

Já modelos substitutos ou regressores visam ge-
rar as mesmas predições (resultados numéricos)
que uma determinada teoria, como, por exemplo,
reproduzir as energias e forças calculadas pela
DFT para algum sistema. Neste campo, o desen-
volvimento de potenciais interatômicos via ML
(machine learning interatomic potential – MLIP)
tem um importante destaque. MLIPs são mode-
los treinados para reproduzir os resultados de cál-
culos ab initio, na grande maioria dos casos DFT,
para algum conjunto de materiais e/ou moléculas
de interesse [135–137] com um custo computa-
cional muito reduzido [69]. Isto abre um novo
horizonte na área de simulação de materiais, pos-
sibilitando realizar simulações de dinâmica mo-
lecular com qualidade DFT em sistemas gran-
des e por tempos longos, algo que seria proibi-
tivamente custoso e até impensável sem o uso de
MLIPs [138–140].

Atualmente, não é necessário ter conheci-
mento aprofundado de redes neurais para trei-
nar MLIPs. Vários softwares já foram desenvolvi-
dos que facilitam essa tarefa, abstraindo a maior
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Figura 4: Diagrama esquemático de uma rede neural. Cada neurônio (detalhado do esquema à direita) recebe sinais de
entrada ai que são linearmente combinados conforme os pesos wi, que determinam a intensidade da conexão, resultando
em z, e passado pela função de ativação (também chamada não-linearidade) f . O resultado imita o funcionamento de
um neurônio no cérebro, um sinal de entrada forte ativa o neurônio, caso contrário o neurônio não dispara. A rede neural
combina o processamento em camadas destes neurônios.

parte da técnica de ML requerida para a deter-
minação das arquiteturas das RNs e para o trei-
namento. Entre eles, citamos alguns dos mais
importantes: o MACE [66, 141], que emprega re-
des neurais de grafos e incorpora a simetria do
sistema; o MLIP [67, 68], que usa representação
de potenciais de tensor de momento [142] e apre-
senta boa escalabilidade; e o DeepMD-kit, um dos
pioneiros na área e muito versátil [143–145].

O “santo graal” para MLIPs são os chama-
dos potenciais universais (uMLIP), treinados com
grandes bancos de dados de cálculos DFT para
uma ampla gama de materiais e moléculas. Estes
visam cobrir toda a tabela periódica e, portanto,
são capazes de descrever as interações interatô-
micas em um espaço químico amplo [146–148].
O desenvolvimento de uMLIPs [65, 149–153] tem
recebido muita atenção recentemente devido ao
seu alto potencial disruptivo, incluindo institui-
ções como a Meta [150], Microsoft [152] e Google
Deepmind [151]. O desempenho desses potenciais
universais ainda deixa a desejar, principalmente
em ambientes ou interações atômicas que diferem
significativamente dos dados de treinamento, e es-
pecialmente em regiões de alta energia ou fenô-
menos de superfície [146–148].

Uma estratégia para resolver este problema é
fazer o refinamento (fine tuning) da uMLIP, que
consiste em realizar um treinamento parcial com
dados do problema específico, ajudando a es-
pecializar o potencial universal para o sistema
alvo [154,155]. Apesar disso, relembrando que se
trata de uma área muito recente e em rápido de-
senvolvimento, MLIPs e uMLIPs já expandiram

as capacidades de simulação em pesquisa de ma-
teriais e química, acelerando muito as simulações
em larga escala em comparação com métodos ab
initio.

3.3 Alquimia computacional: predição
evolutiva de materiais sob condições
extremas

Matéria e evolução estão intrinsecamente cor-
relacionadas desde o Universo primordial. Os
materiais naturais conhecidos transformaram-se
através de processos físico-químicos sob condições
extremas de pressão e temperatura na flecha do
tempo. Os modernos alquimistas buscam prever
e sintetizar novos materiais com propriedades sur-
preendentes, onde a Mecânica Quântica constitui
uma ferramenta fundamental para determinar a
estabilidade termodinâmica através de cálculos ab
initio. Paralelamente, desenvolvem-se estratégias
computacionais bioinspiradas para combinar ele-
mentos em clusters e sólidos de forma eficiente,
mimetizando processos evolutivos naturais.

A célebre declaração de John Maddox em
1988 – “...sólidos como a água cristalina ainda
são considerados além da compreensão mortal”
– encapsulava o profundo ceticismo científico da
época sobre nossa capacidade de prever estrutu-
ras cristalinas complexas a partir de primeiros
princípios [156]. Este ceticismo emergiu de
um contexto histórico em que a predição de
fases de alta pressão da água, como gelo VII,
X ou XVIII, representava um desafio intratável
devido à complexidade quântica inerente e ao
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vasto espaço combinatório de configurações
atômicas. Os métodos computacionais então
disponíveis mostravam-se incapazes de navegar
eficientemente pelas paisagens energéticas mul-
tifunil, caracterizadas por inúmeros mínimos
locais que aprisionavam as buscas em soluções
subótimas. Nesse panorama, a comunidade
científica considerava a cristalografia teórica
como um domínio essencialmente dependente de
dados experimentais, com a predição ab initio
de estruturas complexas permanecendo além do
alcance computacional da época.

Alquimia Computacional

A predição computacional de materiais re-
presenta a “alquimia moderna”, onde cálcu-
los quânticos substituem fornos e cadinhos,
transformando elementos em materiais funci-
onais através de simulação.

O desenvolvimento do USPEX (Universal
Structure Predictor: Evolutionary Xtallography)
constitui uma resposta paradigmática a esse
desafio histórico. Lançado em 2006 [61] por
Artem R. Oganov e colaboradores, esse pacote
computacional implementa algoritmos evolutivos
darwinianos (seleção, mutação e cruzamento)
adaptados à predição de materiais. O pro-
grama representa uma ferramenta computacional
avançada para predição de estruturas cristali-
nas (CSP) baseada em algoritmos evolutivos,
cuja primeira versão focou especificamente
na predição estrutural sob condições de alta
pressão. Sua genialidade reside em superar as
limitações apontadas por Maddox mediante
técnicas inovadoras: as antiseeds e a meta-
dinâmica atuam como sistemas de memória
evolutiva que evitam mínimos locais, o enve-
lhecimento e a morte estrutural preservam a
diversidade populacional, enquanto operadores
de variação fisicamente motivados garantem a
exploração eficiente do espaço configuracional.
Essa síntese conceitual concretiza a “alquimia
computacional” por meio de predições notáveis,
incluindo fases exóticas de gelo (Ice XVIII) em
condições planetárias [157], supercondutores de
alta temperatura como LaH10 [158] e materiais
superduros inéditos [159], transformando o que

Figura 5: Linha do tempo do USPEX [160–167].

antes era considerado além da compreensão
humana em domínio de descoberta sistemática
e estabelecendo novos paradigmas na ciência de
materiais computacional.

Pressão Extrema como Laboratório

Interiores planetários funcionam como labo-
ratórios naturais onde pressões de terapascals
(≈106 atm) forjam materiais exóticos. O US-
PEX decifra essas condições inacessíveis ex-
perimentalmente.

Essa metodologia catalisou avanços transfor-
madores na ciência dos materiais ao permitir a
predição confiável de estruturas estáveis e meta-
estáveis sob condições extremas de temperatura,
pressão e composição, sem qualquer input expe-
rimental prévio. Essa capacidade gerou insights
fundamentais sobre novos materiais e estequiome-
trias inesperadas, com seu desenvolvimento semi-
nal impulsionado pela investigação pioneira sobre
estruturas cristalinas formadas em ambientes pla-
netários extremos [62].

Antecedendo o USPEX, diversos programas já
empregavam algoritmos genéticos e estratégias
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evolutivas para a predição de estruturas crista-
linas e a descoberta de materiais, estabelecendo
métodos fundamentais que inspiraram os algo-
ritmos evolutivos avançados do programa. Es-
sas ferramentas precursoras forneceram a base
intelectual e metodológica que permitiu ao US-
PEX evoluir para um pacote abrangente capaz de
realizar predição de estruturas cristalinas multi-
elementares complexas, consolidando sua posi-
ção como instrumento preferencial para desven-
dar novos materiais e fenômenos de alta pressão.

A evolução da predição computacional de
estruturas cristalinas foi construída a partir
de contribuições fundamentais de diversas
ferramentas que precederam e inspiraram o
desenvolvimento dos algoritmos evolutivos mo-
dernos. Esses programas pioneiros estabeleceram
métodos computacionais essenciais que abriram
caminho para técnicas mais sofisticadas de busca
estrutural e descoberta de novos materiais. A
Figura 5 apresenta a linha do tempo gráfica e um
resumo dos principais precursores desse campo.

Abordagens Complementares

Enquanto algoritmos evolutivos dominam a
predição estrutural, métodos como amostra-
gem aleatória (AIRSS) e otimização por en-
xame (CALYPSO) oferecem alternativas efi-
cientes para problemas específicos, demons-
trando a riqueza do ecossistema computacio-
nal.

Esses programas constituíram coletivamente o
arcabouço metodológico que permitiu ao USPEX
consolidar-se como uma ferramenta abrangente
para a predição de estruturas cristalinas multi-
elementares complexas. Suas contribuições con-
juntas, que vão desde os operadores genéticos ini-
ciais até estratégias inovadoras de amostragem,
estabeleceram as bases computacionais necessá-
rias para explorar novos materiais em regimes
termodinâmicos extremos, transformando a pre-
dição estrutural de um desafio intratável em uma
disciplina quantitativa robusta. A eficácia do mé-
todo em navegar por paisagens energéticas com-
plexas fundamenta-se em mecanismos sofisticados
que superam armadilhas de mínimos locais e pre-
servam a diversidade populacional. Entre esses

mecanismos, destacam-se duas técnicas centrais:
metadinâmica e antiseeds, que atuam de forma
complementar para otimizar a busca evolutiva,
enquanto processos de envelhecimento e morte es-
trutural previnem a deriva genética que poderia
conduzir a convergências prematuras.

A metadinâmica constitui um pilar metodo-
lógico no USPEX, originalmente adaptado de
técnicas de simulação molecular. Este meca-
nismo opera adicionando potenciais de “inunda-
ção” gaussianos a regiões já exploradas da pai-
sagem energética, impedindo revisitas repetidas
a mínimos locais conhecidos. Ao erguer barrei-
ras virtuais em áreas previamente mapeadas, a
metadinâmica força a exploração de novos vales
inexplorados, efetivamente transformando a to-
pografia energética durante a busca evolutiva.

Inspirada pelos princípios da metadinâmica,
a técnica de antiseeds introduz uma camada
de memória evolutiva ao algoritmo. Durante a
busca, estruturas representativas são armazena-
das como antiseeds, juntamente com parâmetros
gaussianos que codificam sua posição espacial
e aptidão. Quando estruturas subsequentes
assemelham-se a essas antiseeds, seu valor de
aptidão é penalizado, reduzindo sua probabi-
lidade de sobrevivência nas gerações futuras.
Este mecanismo efetivamente “envelhece” confi-
gurações persistentes, modificando a paisagem
de aptidão ao seu redor e direcionando a ex-
ploração para mínimos globais. A eficácia das
antiseeds é particularmente evidente em sistemas
multifunil de grande escala, onde a probabi-
lidade de estagnação em mínimos locais é elevada.

antiseeds como Sistema Imunológico
Algorítmico

Analogamente a um sistema imunológico, as
antiseeds reconhecem e desencorajam estru-
turas redundantes, forçando diversificação da
população e prevenindo estagnação evolutiva.

Complementando esses mecanismos, os proces-
sos de envelhecimento e morte estrutural atuam
como reguladores críticos da diversidade popula-
cional. O envelhecimento reduz progressivamente
a aptidão de estruturas que persistem por múl-
tiplas gerações sem melhorias significativas, cri-
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ando pressão seletiva para sua substituição por
configurações mais novas e potencialmente diver-
sas. Simultaneamente, a morte remove estruturas
consistentemente mal posicionadas no ranking de
aptidão, liberando recursos computacionais para
novas descendências que podem explorar regiões
inéditas do espaço de busca.

A sinergia entre envelhecimento e morte
mitiga eficazmente a deriva genética, fenômeno
em que a perda de diversidade populacional
conduz a convergências prematuras. O envelhe-
cimento preserva traços diversos ao prolongar a
sobrevivência de estruturas menos aptas, porém
geneticamente distintas, enquanto a morte
elimina configurações estagnadas que consomem
recursos sem contribuir para avanços evolutivos.

Leitmotiv do Algoritmo Evolutivo

Espelhado nos conceitos da biologia evolutiva
(mutação, transmutação, seleção do indivíduo
mais apto), é importante notar que o US-
PEX é baseado em um algoritmo evolutivo
eficiente, mas também tem opções para usar
métodos alternativos (amostragem aleatória,
metadinâmica, algoritmos de otimização de
enxame de partículas corrigidos).

A Figura 6 apresenta o algoritmo que o USPEX
funciona. De maneira geral temos:

• Geração de Estruturas Iniciais: O USPEX
parte de um conjunto inicial de estruturas
que são geradas aleatoriamente, mas respei-
tando certos critérios, como a simetria cris-
talina. As estruturas iniciais são, então, re-
laxadas e avaliadas por um código externo
interligado ao USPEX.

• Cálculo de Energias: O USPEX, por meio do
código externo, calcula a energia de cada es-
trutura usando a teoria do funcional da den-
sidade ou outros métodos de minimização.
Esta teoria permite simplificar os cálculos,
tornando-os mais eficientes. As energias cal-
culadas são usadas para classifica-las: as es-
truturas com menor energia são consideradas
mais estáveis.

• Seleção: As estruturas com maior energia
(menos estáveis) são removidas dos cálculos

subsequentes. Isso é feito para focar os recur-
sos computacionais nas estruturas mais pro-
missoras.

• Variação e Otimização: O USPEX gera no-
vas estruturas a partir das estruturas restan-
tes, utilizando operadores de variação fisica-
mente motivados. Esses operadores podem
incluir, por exemplo, mutações (alterações
pequenas em uma estrutura), cruzamentos
(combinação de partes de duas estruturas) e
permutações (troca de átomos de diferentes
tipos em uma estrutura). As novas estrutu-
ras são então otimizadas e avaliadas.

• Iteração: O processo de seleção, variação e
otimização é repetido várias vezes. Em cada
iteração, o conjunto de estruturas é atuali-
zado: algumas são removidas e novas estru-
turas são adicionadas. O algoritmo continua
até que um critério de parada seja atingido,
como um número máximo de iterações ou
uma convergência na energia das estruturas
mais estáveis.

O USPEX implementa um sistema integrado
de restrições que garante viabilidade física e efici-
ência computacional durante a predição estrutu-
ral. As restrições de simetria, definidas no início
do processo, podem ser baseadas na simetria do
volume ou da superfície, com átomos posiciona-
dos aleatoriamente em posições gerais de Wyckoff
e multiplicados por operações de grupo espacial.
Quando átomos simetricamente relacionados ex-
cedem a proximidade definida pelo usuário, são
fundidos em posições especiais, enquanto estrutu-
ras com átomos não equivalentes excessivamente
próximos são imediatamente descartadas sem re-
laxamento. Criticamente, os operadores de va-
riação intencionalmente quebram simetrias para
permitir o surgimento de novas configurações cris-
talinas com arranjos inesperados.

Ao longo de todas as fases do algoritmo -
desde a geração inicial de estruturas até cálculos
de energia, variação, otimização e iterações
subsequentes - as restrições de simetria são
rigorosamente aplicadas. Durante a geração
inicial, as estruturas já emergem conforme às
simetrias definidas; nos cálculos de energia,
configurações com simetrias não definidas são
eliminadas prematuramente; enquanto nas eta-
pas de variação e otimização, novas estruturas
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Figura 6: Fluxograma esquemático do funcionamento do algoritmo USPEX. O processo inicia-se com a geração de
estruturas iniciais e segue com o cálculo de energias, seleção das configurações mais estáveis, aplicação de operadores de
variação e otimização. Esses passos são iterados até o cumprimento de um critério de parada, resultando na identificação
das estruturas cristalinas mais estáveis.

herdam e respeitam esses parâmetros simétricos.
Esta coerência multidimensional transforma as
restrições de simetria em princípios operacio-
nais fundamentais que permeiam todo o ciclo

preditivo. Complementando essas restrições
geométricas, o USPEX emprega esquemas es-
truturais sofisticados para evitar configurações
patológicas. Um algoritmo iterativo transforma
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células unitárias em formatos especiais com
vetores reduzidos, convertendo simultaneamente
coordenadas atômicas fracionárias para preservar
a identidade estrutural.

Posições de Wyckoff como Alicerces
Cristalográficos

Estes sítios simétricos fundamentais servem
como moldes para a geração inicial de estru-
turas, com o USPEX utilizando sua geometria
intrínseca para garantir consistência cristalo-
gráfica durante a exploração evolutiva.

Três critérios fundamentais regem a viabilidade
estrutural: o comprimento mínimo do vetor celu-
lar previne parâmetros de célula irrealisticamente
curtos que causariam falhas em métodos quânti-
cos; matrizes de distância interatômica mínima
entre diferentes tipos atômicos descartam confi-
gurações com sobreposição nuclear; enquanto, em
cristais moleculares, restrições adicionais geren-
ciam distâncias entre centros geométricos molecu-
lares. Essas salvaguardas garantem que as estru-
turas geradas sejam fisicamente plausíveis e com-
putacionalmente tratáveis, embora valores míni-
mos excessivamente conservadores possam difi-
cultar a geração de estruturas válidas em siste-
mas complexos. O relaxamento estrutural sub-
sequente por dinâmica clássica ou DFT refinaria
essas distâncias para alcançar valores termodina-
micamente realistas, fechando assim o ciclo entre
restrições preliminares e otimização final.

Apesar de seus notáveis sucessos, desafios per-
sistem na predição de sistemas macromoleculares
e materiais com forte correlação eletrônica, onde
os métodos atuais encontram limitações. Futu-
ros desenvolvimentos deverão integrar aprendi-
zado de máquina com algoritmos evolutivos, criar
modelos híbridos que combinem otimização por
enxame de partículas com operadores genéticos
e aprimorar tratamentos de efeitos entrópicos.
Contudo, o legado do USPEX já está consoli-
dado: redefiniu os limites do possível na ciência
de materiais, transformando a predição cristalina
de arte obscura em uma disciplina quantitativa e
inaugurando uma era em que projetamos mate-
riais sob medida para os desafios tecnológicos do
século XXI.

4 Conclusão

Neste trabalho, no contexto do centenário da
descoberta da mecânica quântica, apresentamos
a história e alguns dos fundamentos da teoria
quântica de muitos corpos por meio da DFT e do
método GW. Além disso, discutimos como novos
métodos baseados em algoritmos inteligentes po-
dem ser integrados a essa teoria, possibilitando
a descoberta de novos materiais e moléculas. A
DFT tem suas origens na mecânica quântica e
constitui uma de suas vertentes mais importantes,
aplicada especificamente ao estudo dos elétrons.
Trata-se de uma teoria quântica de muitos cor-
pos que resolve o problema do estado fundamen-
tal desses sistemas de maneira elegante e prática,
o que fez com que diversas áreas de pesquisa pas-
sassem, e continuem a passar, a utilizá-la como
modelo no estudo de sistemas atômicos. Mais re-
centemente, a DFT tem sido empregada também
na astrofísica e na astronomia como ferramenta
essencial para descrever moléculas formadas nos
primórdios do universo e, ainda, moléculas pre-
cursoras da vida em planetas. Além disso, a DFT
pode ser aplicada à previsão de propriedades de
sistemas sob condições extremas, como aquelas
encontradas no interior de planetas e estrelas, fo-
mentando a interdisciplinaridade entre diferentes
áreas do conhecimento. O potencial da DFT é
vasto e tende a impactar cada vez mais campos
fundamentais da ciência.
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