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Abstract: It is of great importance to be fully cognizant of the sucker rod pump system in order to make 
reliable production forecasts and to evaluate potential strategies for optimizing production processes. A 
frequently employed methodology in such circumstances is numerical simulation. A numerical sucker rod 
pump simulator can provide valuable insights into production performance by generating dynamometric 
charts that represent the efficiency of this activity. Since the rod column behaves like a thin rod, it is possible 
to represent the mathematical model by a one-dimensional wave equation that describes the forces acting 
on this rod column. Lea (1990), proposing an improvement of the work of Gibbs (1963), considers the 
effects of the viscosity of the fluid produced in a vertical well without heat exchange, the piston diameter, 
the production column and the rods to obtain the damping factor, thus being more complete and producing 
a more accurate result in the dynamometric charts. Both models are implemented and discussed herein.  
The equations are discretized and solved in the Matlab® environment. The code includes a graphical user 
interface that generates the internal Rodsim application. The application is used to solve a typical case of a 
sucker rod pump and to obtain the surface and downhole dynamometric plots for certain scenarios. 
Keywords: Sucker rod pump. Rod Column. Dynamometric chart. Numerical simulation. 
 
1 Introduction 
 
When oil flows to the surface due solely to the energy within the reservoir, it is said to be flowing naturally. 
However, the production by natural flow is a condition that normally occurs as soon as the productive life 
of the well begins. As the reservoir energy is depleted, or the production flow is reduced to uneconomical 
limits, additional energy is required to mobilize the bottom-to-surface fluids. In this manner, the production 
is accomplished through the use of artificial lift. 

Among the available techniques for operating at the well domain, the sucker rod pump is one of the 
more frequently selected methods. As reported by Costa (2008), the sucker rod pump is utilized as a method 
for artificial lift in over 70% of oil wells globally. 

The energy is transmitted to the fluid through an alternative pump positioned at the bottom of the well, 
which is driven by the pumping unit installed on the surface near the wellhead to transform the rotary 
motion into reciprocating motion. A column of rods serves to transmit the reciprocating motion to the pump, 
which is situated at the bottom of the well. The principal components of the sucker rod pump are the motor, 
rod column, subsurface pump, and tubing, as illustrated in Figure 1. 

The pumping unit is typically connected to an electrical engine or an internal combustion engine via a 
gearbox that facilitates torque transmission, transforming the rotating movement of the engine into an 
alternate movement. The sucker rod, in turn, transmits the mechanical energy received at the surface to the 
subsurface. It should be noted that some energy is lost in the process due to friction (Souza, 2009; Rowlan, 
Mccoy and Podio, 2005; Silva et al., 2014). 
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Figure 1. Typical configuration of a sucker rod pump. Source: Bellarby (2009). 
 

One method for verifying the operational status of the system is to analyze surface dynamometer card 
(SDC) or downhole dynamometer card (DDC). The SDC is generated by recording a dynamometer that is 
coupled to the polished rod, the DDC is calculated from the SDC using a mathematical model. The DDC 
is also identified by dynagraph, or computer pump card, or bottomhole pump card. 

In shallow wells or in wells operating at low pumping speed, interpretation on the SDC is relatively 
effective method in inferring bottomhole equipment performance. 

In deeper wells or in well operating at high speeds, determination of downhole equipment performance 
form SDC is quite impossible. For this reason, the accurate generation of DDC is of great importance. 

Two scientific contributions were very relevant for the study of the sucker rod pump through the 
dynamometric charts. The first one was given by Gibbs (1963) who simulated the dynamic behavior of the 
rod column by solving a damped wave equation. Later, Lea (1990) introduced the fluid flow model in the 
annulus, deriving an expression for the damping coefficient as a function of the piston, tubing and rods 
diameters and the viscosity of the fluid produced. 

In this context, this work has developed a tool to simulate the behavior of a well equipped with a sucker 
rod pumping system based on Gibbs and Lea models. 

This in-house software is a tool both for classroom use, to help transfer theoretical concepts to 
undergraduate and graduate students, and for field use, as the Federal University of Espírito Santo is located 
in an oil-producing region with new operators such as Seacrest Petroleo, Imetame Energia, EnP Energy 
Platform, and Mandacaru Energia. 
 
2 Dynamometric chart 
 
The downhole dynamometric chart is an important tool for analyzing and evaluating the condition of the 
downhole pump, since it shows the effects generated by the load on the downhole pump during a pumping 
cycle. 

The load variation that occurs on a polished rod as it moves through the pumping cycle is registered 
by the surface dynamometer card (SDC). The forces acting on the polished rod at the top of the rod column 
during its movement are measured by a dynamometer installed between the clamp and the pumping unit 
table. As the forces generated by a downhole pump propagate through a rod column, these effects can be 
observed on the downhole dynamometer card (DDC). One factor that should be considered to be influential 
in this process is the elastic behaviour of the rod. Consequently, the SDC is unable to accurately reflect the 
actual behavior of the well pump. In order to obtain a DDC, it is necessary to utilise specialised tools at the 
bottom of the well or to employ mathematical models that utilise the SDC as a basis for obtaining a DDC. 
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Figure 2 depicts a theoretical dynamometric diagram. The horizontal axis represents the piston 
position, while the vertical axis depicts the piston load. The segments c and e represent the contraction and 
elongation of the rod and the production columns, respectively. The lines Ftv and Fsv represent the 
maximum and minimum loads, respectively. The aforementioned lines are drawn with the pump unit 
stopped near the endpoints of the upstroke (for Ftv) and the downstroke. 
 

 
Figure 2. Theoretical downhole dynamometric chart (Gomes, 2009). 
 

Point A represents the commencement of the upstroke, during which the travelling valve closes and 
the standing valve opens. At this point, the weight of the fluid column begins to be transferred to the rod 
column. This elongation will continue as the fluid column is lifted by the weight of the fluid column. At 
point B, the entire load of the fluid column is already acting on the rod column, which is already fully 
elongated. Consequently, the charges will remain constant until the point C, which represents the end of 
the upstroke and the beginning of the downstroke. 

At point C, the standing valve closes, and the traveling valve opens. The weight of the fluid column is 
transferred from the rod column to the tubing to point D, where the entire weight of the fluid is acting on 
it. At point D, the end of the contraction of the rod column is observed, and the load remains constant until 
point A.  

The dynamometric chart, as illustrated in Figure 3, can be utilized to identify potential issues during 
the mechanical pumping operation with rods. 

 

 
Figure 3. Typical downhole dynamometric charts (Lima et al., 2009). 
 

The valve leak references charts (Figure 3b) indicate that when the rod is elevated, drawing fluid to 
the surface, the traveling valve fails, thereby demonstrating irregularity in the process. Consequently, the 
traveling valve does not seal, resulting in the column rising with production loss. 
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The chart with fluid kick references (Figure 3c) illustrates a pumping reading in which the well flow 
rate is less than the flow rate of the tubing can absorb. Consequently, the pump is frequently stopped in 
order to compensate for fluid loss and the associated cost of the process. 

The pump beam references charts (Figure 3d) illustrates the fault that occurs automatically when the 
fluid level is in the pump. When the lifting capacity of the pump exceeds the feed rate of the reservoir, the 
pump is not completely filled. Consequently, at the beginning of the downward movement, the traveling 
valve does not open, and the piston remains with all the weight of the fluid above it. The piston encounters 
the fluid level at high speed, resulting in a substantial impact that is transmitted to the surface by the rod 
column. This scenario is suboptimal and can potentially lead to several structural damages to the system 
(Lima et al., 2009). 

When the DDC plot displays a rectangle, it signifies optimal pumping conditions. These conditions 
are characterized by a rigid and inelastic rod, a low pumping speed (eliminating dynamic forces), an 
incompressible fluid, and an anchored rod tube. Any energy losses along the rod are to be avoided (Guo et 
al., 2007). 

The study of the behavior of the rod column and thus of the subsurface pump is of significant 
importance, as its behavior directly influences the overall efficiency of the system. The primary objective 
of the sucker rod pump is to extract the maximum amount of oil. If this system is not functioning properly, 
the extracted volume will be smaller than expected. 

This research presents a simulator of an artificial elevation system equipped with a sucker rod pump, 
which is based on the solution of the wave equation for a vertical well without heat exchange, considering 
the viscosity of the fluid and elongation effects of the rod. The surface and downhole dynamometric charts 
are the main focus of this study. 

The solution of the governing equations, with appropriate initial boundary conditions, is obtained using 
the so-called finite difference method. The computational code is implemented using the MathWorks 
MATLAB® software. 
 
3 Mathematical model: wave equation 
 
The geometry adopted (Figure 4) is represented by a vertical column of length L and diameter d. This 
column is located within a vertical well that is not shown in the figure. Points A and B, respectively, 
represent the moorings with the polished rod and the bottom pump (in the subsurface). In these points, the 
boundary conditions, A - kinematics of the pump unit and B - operation of the bottom pump, are applied to 
the solution of the valid equation in the internal points. 
 

 
Figure 4. Schematic representation of the geometry adopted (figure not in scale). 
 

The wave equation is defined by an analysis of the forces acting on the rod column. Figure 5 illustrates 
these driving forces. The element is defined by a cross-sectional area A, a time t, the variable x, which 
represents any point in the rod column, and Δx, which is the displacement from that point. 



de Oliveira e Romero | Latin American Journal of Energy Research (2024) v. 11, n. 1, pp. 12–23 

16 

 
Figure 5. Outline of the directions of the forces acting on a rod differential element (Romero and Almeida, 2014). 
 

Additionally, Figure 5 illustrates that 𝑇(𝑥, 𝑡) and 𝑇(𝑥 + ∆𝑥, 𝑡) represent the tensile forces exerted by 
the sections above and below the element, respectively. Furthermore, W represents the weight of the rod 
element, while Fa denotes the damping force acting to oppose the movement of the rods. The remaining 
variables, g and v, respectively denote gravitational force and velocity. 

Newton's second law states that the ratio of linear momentum, defined as the product of mass (m) and 
velocity (v) of the differential element and time (t), is equal to the sum of forces acting on the element. This 

can be expressed as 
ୢ(௠௩)

ୢ௧
=  ∑ 𝐹. 

It is important to note that, despite the elongated nature of the element, the mass (m) remains constant, 
given that the area (A) and the distance between the two points (Δx) are also constant. Consequently, the 
weight of the density element ρ is given by W = mg. Utilizing the aforementioned information and the 

variables presented in Figure 5, we can derive the following equation 
ௗ(ఘ஺∆௫௩)

ௗ௧
=  𝑇(𝑥 + ∆𝑥, 𝑡) − 𝑇(𝑥, 𝑡) +

𝜌𝐴∆𝑥𝑔 + 𝐹௔∆𝑥. Dividing by Δx and considering the limit Δx→0, the previous equation is written as 
ௗ(ఘ஺௩)

ௗ௧
=

ௗ(்)

ௗ௧
+ 𝐴𝜌𝑔 + 𝐹௔. Whereas the term Fa is approximated by the product of velocity v with the 

constant k, 𝐹௔ = −𝑘𝑣. The tension is obtained from Hooke’s Law 𝑇 = 𝐸𝐴
[௨(௫ା∆୶,୲)ି୳(୶,୲)]

∆୶
, where E is the 

modulus of elasticity. 

In the limit Δx→0, the Hooke equation can be rewritten as 𝑇 = 𝐸𝐴
ௗ௨

ௗ୶
, and from 𝑣 =

ௗ(௫ା௨(௫,௧))

ௗ௫
=

ௗ௨(௫,௧)

ௗ௫
, it follows that the one-dimensional partial transient differential equation, which has been renamed 

the one-dimensional viscous friction wave equation, can be derived: 
 
ௗమ௨(௫,௧)

ௗ௧మ =
ா

ఘ

ௗమ௨(௫,௧)

ௗ௫మ −
௞

஺ఘ

ௗ௨(௫,௧)

ௗ௧
+ 𝑔,               (1) 

 
or, in accordance with the definition provided by Gibbs (1963) 
 
ௗమ௨(௫,௧)

ௗ௧మ = 𝑎ଶ ௗమ௨(௫,௧)

ௗ௫మ − 𝜍
ௗ௨(௫,௧)

ௗ௧
+ 𝑔,                (2) 

 
where 𝑎 = ඥ𝐸/ρ is the propagation velocity of the wave in the rod. 

In 1990, Lea extended the work of Gibbs (1963) by deriving an expression for the damping coefficient 
as a function of the fluid viscosity (ղ) produced, the piston diameter, the tubing diameter, and the rod 
diameter. Lea (1990) considers that the piston and rod column velocities (𝑣௥) were approximately equal, 
and that the annular flow was Newtonian, laminar, incompressible, single-phase, and fully developed fluid 
flow. Consequently, the damping coefficient (ς) was expressed by Eqs. (3) and (4). 
 
𝜍 =

ଶగ௥ೝղ

ఘೝ஺ೝ
ቀ𝐾ଵ + 𝐾ଶ

஺ೝ

஺೟ି஺ೝ
ቁ , if 𝑣௥ < 0,               (3) 

 
𝜍 =

ଶగ௥ೝղ

ఘೝ஺ೝ
ቀ𝐾ଵ − 𝐾ଶ

஺೛ି஺ೝ

஺೟ି஺ೝ
ቁ , if 𝑣௥ > 0,              (4) 

 
where, 𝐴௧ represents the cross-sectional area of the tubing, 𝐴௥ the cross−sectional area of the rod, 𝐴௣ the 
cross-sectional area of the piston, ρ௥ the specific mass of the rod material and 𝐾ଵ and 𝐾ଶ are geometric 
factors as a function of the diameters of the tubing and the rods, as shown in Eqs. (5) and (6). 
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𝐾ଵ =
൫௥೟

రି௥ೝ
ర൯௟௡

ೝೝ
ೝ೟

ା(௥೟
మି௥ೝ

మ)ି[ଶ௥ೝ
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ೝೝ
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ା(௥೟
మି௥ೝ

మ)మ]
,            (5) 

 

𝐾ଶ =
ଶ൫௥೟

మି௥ೝ
మ൯[ଶ௥ೝ

మ ୪୬൬
ೝೝ
ೝ೟

൰ା(௥೟
మି௥ೝ

మ)]

௥ೝ[(௥೟
రି௥ೝ

ర)௟௡
ೝೝ
ೝ೟

ା(௥೟
మି௥ೝ

మ)మ]
,               (6) 

 
𝑟௧ is the radius of the tubing. 

By solving the wave equation, Eq. (2), it is possible to obtain the unknowns 𝑢൫𝑥௜ , 𝑡௝ାଵ൯ and thus, draw 
the dynamometric charts through the simulator. 
 
3.1 Initial conditions 
 

A number of hypotheses were employed in the construction of the geometry, which comprises a 
column of vertical rods (without gloves and without centralizers) of length L and diameter d that is constant, 
without gas interference, constant angular velocity of the counterweights, pump filled by the fluid, and the 
inertia of the fluid is disregarded. 

As a preliminary assumption for the calculations, at a time t = 0, the system can be considered at rest 
and can be mathematically represented by Eqs. (7) and (8). 
 
𝑢(𝑥, 0) = 0,                   (7) 
 
ௗ௨(௫,଴)

ௗ௧
= 0.                   (8) 

 
Boundary conditions are employed within the limits of the rod column: at the surface, through the 

position of the polished rod, and in subsurface, through the operating condition of the pump. According to 
According to Tákacs (2002), the most used approach to describe the movement of the polished bar is a 
harmonic movement. Eq. (9) indicates the polished rod position 𝑠(𝜃) on the surface according of the crank 
angle θ, the stroke of the polished rod is indicated by S. 

Boundary conditions are employed within the limits of the rod column. At the surface, this is achieved 
through the position of the polished rod. In the subsurface, it is accomplished through the operating 
condition of the pump. 

In accordance with Tákacs (2002), the most prevalent methodology for characterizing the motion of 
the polished bar is a harmonic approach. Eq. (9) illustrates the relationship between the polished rod 
position, 𝑠(𝜃), on the surface and the crank angle, θ, as well as the stroke of the polished rod, S. 
 
𝑠(𝜃) =

ௌ

ଶ
(1 − 𝑐𝑜𝑠θ),                  (9) 

 
As stated by Tákacs (2002), the effective piston stroke (𝑆௣) is influenced by the elongation of the 

production column (𝑒௧) and the rod column (𝑒௥), which occurs due to fluid loading. Furthermore, Costa 
(1995) posits that the dynamic elongation (𝑒௥௔) also contributes to this discrepancy. Consequently, the 
piston stroke can be represented mathematically by Eq. (10). 
 
𝑆௣ = 𝑆 + 𝑒௥௔ − (𝑒௧ + 𝑒௥),                 (10) 
 
𝑒௧ = 𝐹௢𝐸௧𝐿,                   (11) 
 
𝑒௥ = 𝐹௢𝐸௥𝐿 ,                    (12) 
 
where, Fo is the fluid weight in the piston, Et and Er are the elastic constants of the materials of the 
production column and the rod column, respectively. The dynamic elongation (𝑒௥௔), as defined by Costa 
(1995), is expressed by Eq. (13). 
 
𝑒௥௔ =

௔೘ೌೣ஡ೝ௅

ாೝ
                    (13) 
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the maximum acceleration of the rods, 𝑎௠௔௫, is given by the expression 
ఠమௌ

ଶ
, where 𝜔 = 2𝜋𝑁 is the angular 

velocity, and N is the pumping frequency. The specific mass of the rods, 𝜌௥, is also a factor in this equation. 
 
4 Numerical solution of the wave equation 
 
The rod column was divided into several discrete elements. Consequently, the governing equations for the 
deformation of the rod column were discretized by the finite difference method and explicit time-stepping 
technique. 

The continuous differential equation, Eq. (2), is evaluated at discrete points (𝑥௜ , 𝑡௝) (Fig. 6), resulting 
in the following: 
 

 
Figure 6. Schematic representation of the tubing to perform spatial and temporal discretization. 
 
ௗమ௨(௫೔,௧ೕ)

ௗ௧మ = 𝑎ଶ ௗమ௨(௫೔,௧ೕ)

ௗ௫మ − 𝜍
ௗ௨൫௫೔,௧ೕ൯

ௗ௧
                (14) 

 
All three terms of Eq. (14) are approximated by finite differences, expressed as follows: 

 
௨൫௫೔,௧ೕశభ൯ିଶ௨൫௫೔,௧ೕ൯ା௨൫௫೔,௧ೕషభ൯

௱௧మ
≈ 𝑎ଶ ௨൫௫೔శభ,௧ೕ൯ିଶ௨൫௫೔,௧ೕ൯ା௨൫௫೔షభ,௧ೕ൯

௱௫మ
− 𝜍

௨൫௫೔,௧ೕశభ൯ି௨൫௫೔,௧ೕషభ൯

ଶ௱௧
 .    (15) 

 
Eq. (15) is rewritten as follows: 

 

𝑢൫𝑥௜ , 𝑡௝ାଵ൯ ≈
ଵ

ഒ೩೟

మ
ାଵ

{ቀ
௔௱௧

௱௫
ቁ

ଶ

𝑢൫𝑥௜ାଵ, 𝑡௝൯ + [2 − 2 ቀ
௔௱௧

௱௫
ቁ

ଶ

]𝑢൫𝑥௜ , 𝑡௝൯ + ቀ
௔௱௧

௱௫
ቁ

ଶ

𝑢൫𝑥௜ିଵ, 𝑡௝൯ +  (
చ௱௧

ଶ
− 1)𝑢൫𝑥௜ , 𝑡௝ିଵ൯}  (16) 

 
 The CFL (Courant, Friedrichs, and Lewy) condition is employed to obtain solutions for 
discrete equations of this nature. The dimensionless Courant number, denoted by Co, is defined as 
𝐶𝑜 =

௔௱௧

௱௫
, where a is the wave velocity, Δt is the interval, and Δx is the size of the mesh element. 

According to this condition, the Courant number must be less than or equal to one for the method 
to be developed (Thomas, 1995). Consequently, the Courant number is set to one in the present 
study, and Eq. (16) is simplified to: 
 
𝑢൫𝑥௜, 𝑡௝ାଵ൯ ≈ 𝐴𝑢൫𝑥௜ାଵ, 𝑡௝൯ + 𝐵𝑢൫𝑥௜ିଵ, 𝑡௝൯ + 𝐶𝑢൫𝑥௜ , 𝑡௝ିଵ൯ ,          (17) 
 
where A, B and C are constants expressed by 
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𝐴 = 𝐵 =  
ଵ

ಛ౴౪

మ
ାଵ

 ;  𝐶 =  
ಛ౴౪

మ
ିଵ

ಛ౴౪

మ
ାଵ

                 (18) 

 
Is should be noted that Eqs. (17) and (18) provides a response as a function of three points (𝑥௜ାଵ, 𝑡௝) ,( 

𝑥௜ିଵ, 𝑡௝) e (𝑥௜, 𝑡௝ିଵ). For further details, please refers to Schmidt and Doty (1989) and Doty and Schmidt 
(1983). 
 
5 The Rodsim academic simulator 
 
The discrete equations, Eqs. (17) and (18), and boundary conditions were implemented in MathWorks 
MATLAB® software, as the environment allows an easy graphical visualization for the dynamometric 
charts and has ready-made libraries that facilitate the iterative calculation. A Graphical User Interface (GUI) 
was also developed resulting in the creation of our in-house simulator, RodSim (the formalization of the 
software’s name is currently being processed). 

In the simulator, users may select between the models of Gibbs (1963) and Lea (1990) and input 
several parameters, including the modulus of elasticity of the rod material, the speed of sound in the rods, 
the rod column length, the specific weight of rod material, the polished rod stroke, the pumping speed, the 
fluid's specific gravity, the tubing diameter, the piston diameter, the rod diameter, and the fluid's produced 
viscosity (Figure 7). 
 

 
Figure 7. Layout of RodSim simulator. 
 

Once the user has entered the desired values and selected the desired model type, the program will 
generate two dynamometric charts in the same window, as illustrated in Figure 7. These charts will be the 
surface dynamometric chart and the downhole dynamometric chart. This approach allows for the 
observation of the production process. 
 
6 Rodsim application 
 
The simulator permits the user to ascertain dynamometric charts according to the input data utilized. In this 
case study, the operational characteristics of the system are presented in Table 1. These data were derived 
from Romero and Almeida (2014). 

The parameters for numerical simulation are presented in Table 2. In this simulation a number of 
discrete elements for the rod were tested, including 10, 100, 1,000, and 10,000. It was demonstrated that 
with 1,000 elements the results of the simulation remained constant. 
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Parameter Value 
Sound velocity in rods, ft/s 15,700 
Rod material modulus of elasticity, MPa 30.5 
Column length rods, ft 2,200 
Pump speed, spm 12.5 
Polished rod stroke, pol 42 
Rods diameter, in 0.75  
Specific weight of the rod material, lbf /ft3 495.33 
Specific gravity of the fluid, --- 0.82 
Production column diameter, in 2.375 
Piston diameter, in 1.5 
Fluid produced viscosity, cP 10 

Table 1. Operational and geometric parameter 
 

Parameter Value 
Number of elements, --- 1,000 
Element size, ft 2.2 
Number of time steps, --- 100,000 
Time step, s 0.00011 
Total simulation time, s 11 

Table 2. Parameters used for a 2,200 ft long rod column. 
 

Figure 8 depicts the surface dynamometer chart representing the load value on the polished rod 
according to its position. This allows for the determination of some operating parameters of the system, 
such as the maximum (PPRL - maximum polished rod load) and minimum (MPRL - minimum polished 
rod load) loads on the polished bar. In this case, the values obtained were 8,202.9 and 1,611.6 pounds (lb 
in the figure), respectively. Figure 9 shows the downhole dynamometric chart. 

Figure 10 depicts a variation of the downhole dynamometric chart presented in Figure 9, wherein the 
length of the tubing has been increased from 2,200 ft to 3,200 ft. Upon comparison, it becomes evident that 
the novel result exhibits a more pronounced elongation and a greater distortion in the calculations during 
both the ascending and descending movements. According to Gomes (2009), The surface chart is 
susceptible to distortion from the propagation of the effects generated by the rod column, rendering it an 
inefficient tool of analysis in certain cases, particularly when the depth of the wells exceeds 1,000 meters. 
 

 
Figure 8. Surface dynamometer chart for a 2,200 ft long rod column. 
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Figure 9. Downhole dynamometer chart for a 2,200 ft long rod column. 
 

 
Figure 10. Downhole dynamometer chart for a 3,200 ft long rod column. 
 
6.1 Lea’s model (1990) 
 
In this simulation, the same parameters from Tables 1 and 2 were utilized to construct the model within the 
application. The objective was to ascertain whether the discrepancies would be discernible when a more 
recent model was employed. The Lea model incorporates a greater number of variables in its calculation of 
the damping factor, which is not included in the Gibbs (1963) model. 

Lea's model (1990) exhibits larger values than the Gibbs model (1963), a result that was anticipated 
based on the conditions considered by Lea (1990). These differences can be observed in Table 3. 
 

 PPRL, lbs MPRL, lbs 

Gibbs’s model (1963) 8,202.9 1,611.6 

Lea’s model (1990) 8,611.6 1,632.3 
Table 3. Results of the cases simulated for a 2,200 ft long rod column. 
 

Figure 11 depicts a downhole dynamometric chart for a 2,200-foot segment of the rod column. Figure 
12 depicts the downhole dynamometric chart for a rod column measuring 3,200 ft in length. 

The figures illustrate the identical comparison made in the simulation with the Gibbs model. The 
outcomes are strikingly comparable to those of the preceding model, thereby substantiating the veracity of 
both models. It should be noted that the Lea model considers the viscosity of the fluid produced and the 
damping factor, which renders it a more comprehensive model than the Gibbs model. 

The simulator additionally furnishes the Courant number for the two models following the simulation 
process, which is 0.785. 
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Figure 11. Surface dynamometer chart for a 2,200 ft long rod column. 
 

 
Figure 12. Downhole dynamometer chart for a 2,200 ft long rod column. 
 

 
Figure 13. Downhole dynamometer chart for a 3,200 ft long rod column. 
 
7 Final considerations 
 
This work presents the most significant stages of development of the RodSim, an academic simulator. The 
RodSim can be used for teaching purposes in topics related to sucker rod pumps, or to develop research 
projects at undergraduate and graduate programs.  

The methodology employed was derived from the work of Gibbs (1963) and Lea (1990). In calculating 
the damping factor, Lea (1990) considers the viscosity of the produced fluid, the piston diameter, the rod 
diameter, and the diameter of the production column. 

It is still considered that the damping factors in the upstroke and downstroke are different, and thus, 
the results presented in the dynamometric charts are more accurate. 
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In the RodSim interface, the user defines input parameters, which are then used to generate two 
dynamometric charts: one for downhole conditions and one for surface conditions. 

Nevertheless, several potential enhancements could be implemented, including the effects of rod 
connections, gas bubbles, sediments, and so forth. 
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