Leprosy: Immunological Aspects and Diagnostic Methods - a review
DOI:
https://doi.org/10.47456/hb.v5i3.46657Keywords:
leprosy, Mycobacterium leprae, immunology, diagnosisAbstract
Leprosy is an infectious, transmissible, chronic disease caused by Mycobacterium leprae. Genetic, immunological and environmental aspects determine individual susceptibility to the bacillus and explain the progression and/or regression of the disease. The objective of this study was to evaluate and understand the immunological aspects of leprosy and how they can influence the diagnosis. Six articles related to the immunological characteristics of leprosy and four articles related to diagnostic methods were selected. The results demonstrate that increased expression of the “Toll Like 4” receptor in neutrophils is a universal biomarker. Susceptibility to leprosy poles was demonstrated by single nucleotide polymorphism (SNP) in the promoter region of DC-SIGN CD209, IL-17A gene and vitamin D receptor (VDR) in the FokI, TaqI and ApaI regions. There was an increase in the expression of the transcription factor FOXP3 in multibacillary patients and during type 1 reactions. Regarding the diagnosis by antibody detection, the NDO-LID conjugate showed greater sensitivity than NDO-BSA and LID-1 separately. The ML-Flow rapid test had a high level of positivity, but most paucibacillary patients do not develop detectable antibodies and are not diagnosed by this method. Regarding the investigation of M. leprae DNA, ISSR-PCR proved to be a more effective method than RLEP-PCR and bacilloscopy. Thus, it can be concluded that the immune system is closely related to the development of leprosy. The analysis of the methods makes it clear that the use of antigens for antibody detection and the analysis of M. leprae DNA are effective and rapid when compared with bacilloscopy.
Downloads
References
1. AARÃO T, SOUZA J, BOTELHO B, FUZZI H, QUARESMA J. Correlation between nerve growth factor and tissue expression of IL-17 in leprosy. Microb Pathog 90: 64-68, 2016.
2. ARAÚJO M. Hanseníase no Brasil. Rev Soc Bras Med Trop 36(3): 373-382, 2003.
3. BARRETO J, BRANDÃO J, FRADE M, ANDRADE V. Guia prático sobre a hanseníase. Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância das Doenças Transmissíveis. Brasília: Ministério da Saúde, 2017. 68p.
4. BECKER R, BÁRBARA LF. Genética Básica. Porto Alegre: Grupo A, 2018, 255p.
5. BELOTTI N, NARDI S, PASCHOAL V, MONTANHA J, PEDRO H, GAZETTA Z. Laboratory diagnosis of leprosy: Two staining methods from bacilloscopy and rapid ml flow test. Int J Mycobacteriol 10(4): 393-397, 2021.
6. BOVOLINI G, SILVA E, SOUZA V. Desempenho dos antígenos PGL-I, LID-1e NDO-LID para diagnóstico sorológico de hanseníase em pacientes e contatos domiciliares: revisão de literatura. Hansen Int 44: e-2368, 2019.
7. CARVALHO J, ARAÚJO M, REIS J, MAGALÃES V, ALVARES V, MOREIRA M, CARVALHO A, FILHO O, ARAÚJO M. Phenotypic and functional features of innate and adaptive immunity as putative biomarkers for clinical status and leprosy reactions. Microbial Pathogenesis 125: 230-239, 2018.
8. CAVALCANTI MSB. Receptor de lectina do tipo C DC-SING e seu papel na tuberculose e COVID-19. Trabalho de Conclusão de Curso (Graduação), Centro de Biociências, Biomedicina, Universidade Federal de Pernambuco, Recife, 2023, 47p.
9. CONTIN L, ALVES C, FOGAGNOLO L, NASSIF P, BARRETO J, LAURIS J, NOGUEIRA M. Uso do teste ML-Flow como auxiliar na classificação e tratamento da hanseníase. An Bras Dermatol 86(1): 91-95, 2011.
10. CORIOLANO C, NETO W, PENNA G, SANCHEZ M. Fatores associados ao tempo de ocorrência das reações hansênicas numa coorte de 2008 a 2016 em Rondônia, Região Amazônica, Brasil. Cad Saude Publica 37(12): e00045321, 2021.
11. CRUVINEL W, JÚNIOR D, ARAÚJO J, CATELAN T, SOUZA A, SILVA N, ANDRADE L. Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev Bras Reumatol 50(4): 434:461, 2010.
12. FARAG A, LABEEB A, GERGES A, ELSHAIB M. Interleukin-17A in Egyptian leprosy patients: a clinical, genetic, and biochemical study. An Bras Dermatol 97(6): 735-741, 2022.
13. FONSECA A, SIMON M, CAZZANIGA R, MOURA T, ALMEIDA R, DUTHIE M, REED S, JESUS A. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty 6(1): 5, doi:10.1186/s40249-016-0229-3, 2017.
14. FREITAS L, OLIVEIRA A. Utilização de polimorfismos de base única (SNPs) na identificação de doenças genéticas. Encontro Internacional de Produção Científica Cesumar. ISBN 978-85-61091-05-7, 2009.
15. GERMANO G, BRAGA A, CAMARGO R, BALLALAI P, BEZERRA O, MANTA F, BELONE A, SOARES C, DAS P, MORAES M, LATINI A, SOUZA V. Association of CD209 (DC-SIGN) rs735240 SNV with paucibacillary leprosy in the Brazilian population and its functional effects. Mem Inst Oswaldo Cruz 117: e220014, 2022.
16. GUPTA M, CHYI Y, SEVERSON J, OWEN J. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence re- peats. Theor Appl Genet 89(7-8): 998-1006, 1994.
17. HASTINGS RC. Leprosy Review. LEPRA 65(4): 1-132, 1994.
18. JIAN L, XIUJIAN S, YUANGANG Y, YAN X, LIANCHAO Y, DUTHIE M, YAN W. Evaluation of antibody detection against the NDO-BSA, LID-1 and NDO-LID antigens as confirmatory tests to support the diagnosis of leprosy in Yunnan province, southwest China. Trans R Soc Trop Med Hyg 114(3): 193-199, 2020.
19. JUNIOR D, ARAÚJO J, CATELAN T, SOUZA A, CRUVINEL W, ANDRADE L, SILVA N. Sistema imunitário - parte II: fundamentos da resposta imunológica mediada por linfócitos T e B. Bras J Rheumatol 50(5):552-580, 2010.
20. KIM C. FOXP3 and its role in the immune system. Adv Exp Med Biol 665: 17-29, 2009.
21. KUNDAKCI N; ERDEM C. Leprosy: a great imitator. Clin Dermatol 37(3): 200-212, 2019.
22. LIMA C, COSTA E, SAMPAIO L. Expression of FoxP3 in different forms of leprosy and reactions. J Bras Patol Med Lab 55(4): 434-441, 2019.
23. MENDONÇA V, COSTA R, MELO G, ANTUNES C, TEIXEIRA A. Imunologia da hanseníase. An Bras Dermatol 83(4): 343-350, 2008.
24. MOHANTY P, NAAZ F, BANSAL A, KUMAR D, SHARMA S, ARORA M, SINGH H, KATARA P, SONI N, PATIL S, SINGH. Molecular detection of Mycobacterium leprae using RLEP-PCR in post elimination era of leprosy. Mol Biol Res Commun 9(1):17-22, 2020.
25. MONHANTY P, BANSAL A, NAAZ F, PATIL S, ARORA M, SINGH M. Dominant marker (inter-simple sequence repeat-polymerase chain reaction) versus codominant marker (RLEP-polymerase chain reaction) for laboratory diagnosis of leprosy: A comparative evaluation. Int J Mycobacteriol 9(1): 18-23, 2020.
26. PAZ J, SILVESTRE M, MOURA L, FURLANETO I, RODRIGUES Y, LIMA K, LIMA L. Association of the polymorphism of the vitamin D receptor gene (VDR) with the risk of leprosy in the Brazilian Amazon. Bioscience Reports 41(7): BSR20204102, 2021.
27. POYRAZ I. Comparison of ITS, RAPD and ISSR from DNA-based genetic diversity techniques. C R Biol 339(5-6): 171-178, 2016.
28. PRUENSTER M, VOGL T, ROTH J, SPERANDIO M. S100A8/A9: From basic science to clinical application. Farmacol Ther 167: 120-131, 2016.
29. QUEIROZ T, CARVALHO F, SIMPSON C, FERNANDES A, FIGUEIRÊDO D, KNACKFUSS. Perfil clínico e epidemiológico de pacientes em reação hansênica. Rev Gaúcha Enferm 36(esp): 185-191, 2015.
30. ROSA T, TAVARES I, DIAS A, BARBOOZA M, COSTA F, BELONE A, HACKER M, BELISLE J, PESSOLANI M, CALVO T, MENDES M, PIAUY M, KAPUSCINSKI M, MARQUES M SALES A, MOREIRA M, MORAES M, SCHMITZ V. Whole blood transcriptomics reveals the enrichment of neutrophil activation pathways during erythema nodosum leprosum reaction. Front Immunol 15: 1366125, doi: 10.3389/fimmu.2024.1366125, 2024.
31. SAINI C, SIDDIQUI A, RAMESH V, NATH I. Leprosy Reactions Show Increased Th17 Cell Activity and Reduced FOXP3+ Tregs with Concomitant Decrease in TGF-β and Increase in IL-6. PLoS Negl Trop Dis 10(4): e0004592, 2016.
32. SILVA M, LI W, BOUTH R, GOBBO A, MESSIAS A, MORAES T, JORGE E, BARRETO J, FILHO F, CONDE G, FRADE M, SALGADO C, SPENCER J. Latent leprosy infection identified by dual RLEP and anti-PGL-I positivity: Implications for new control strategies. PLoS One 16(5): e0251631, 2021.
33. SINGH I, LAVANIA M, PATHAK V, AHUJA M, TURANKAR R, SING V, SENGUPTA U. VDR polymorphism, gene expression and vitamin D levels in leprosy patients from North Indian population. Plos Negl Trop Dis 12(11): e0006823, 2018.
34. STEEN E, WANG X, BALAJI S, BUTTE M, BOLLYKY P, KESWANI S. The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis. Adv Wound Care (New Rochelle) 9(4): 184-198, 2020.
35. VAN BEERS SM, DE WIT MYL, KLASTER PR. MiniReview: The epidemiology of Mycobacterium leprae: Recent insight. FEMS Microbiol Lett 136: 221-230, 1996.
36. WHO. Global leprosy (Hansen disease) update, 2019: time to step‐up prevention initiatives. Wkly Epidemiol Rec 95: 417‐440, 2020.
37. ZAMBRANO J, MARTÍNEZ E, AVELAR M, MAGALLANES N, PÉREZ N. Th17 Cells in Autoimmune and Infectious Diseases. Int J Inflam 651503, doi: 10.1155/2014/651503, 2014.