As soluções de buracos negros: 1916-1965
DOI:
https://doi.org/10.47456/Cad.Astro.v4n1.39861Palavras-chave:
estrelas invisíveis, buracos negros, Schwarzschild, Reissner-Nordström, Kerr, Newman, extensões analíticas, massas pontuaisResumo
Historicamente, as primeiras soluções da relatividade geral não foram reconhecidas como soluções de buracos negros. Elas foram, a princípio, idealizadas para descrever o campo gravitacional de objetos massivos esfericamente simétricos, como o Sol ou o elétron. Neste artigo, vamos apresentar as soluções de buracos negros em seu contexto histórico e mostrar como a nossa compreensão sobre o universo mudou à medida que desvendamos propriedades fundamentais sobre estes campos gravitacionais. O objetivo é apresentar uma introdução histórica sobre a relatividade geral e buracos negros, focada na teoria de gravitação e suas interpretações, como apoio didático para aqueles que pretendem iniciar os estudos sobre o tema.
Downloads
Referências
A. Einstein, A new formal interpretation of Maxwell’s field equations of electrodynamics, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916, 184 (1916). Disponível em https://einsteinpapers.press.princeton.edu/vol6-trans/144, acesso em fev. 2023.
J. Michell, On the means of discovering the distance, magnitude, &c. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such diminution should be found to take place in any of them, and such other data should be procured from observations, as would be farther necessary for that purpose, Philos. Trans. LXXIV, 35 (1783).
A. Ghez, A descoberta de um buraco negro supermassivo no centro da nossa galáxia, in Anais do I Encontro Brasileiro de Meninas e Mulheres da Astrofísica, Gravitação e Cosmologia - As Astrocientistas, editado por C. R. Almeida et al. (Blucher, 2022), 1–8.
P. S. Laplace, Exposition du Sistème du Monde (De l’Imprimerie du Cercle-Social, 1796).
C. Montgomery, W. Orchiston e I. Whittingham, Michell, Laplace and the origin of the black hole concept, Journal of Astronomical History and Heritage 12(2), 90 (2009). Disponível em https://drive. google.com/file/d/1c582Ql54aCZsMky_ uoNEgOP18cGwmH_x/view, acesso em fev. 2023.
T. Young, II. The Bakerian Lecture. On the theory of light and colours, Phil. Trans. R. Soc. 92, 12–48 (1802). Disponí- vel em https://www.jstor.org/stable/ 107113, acesso em fev. 2023.
O. F. Piattella, O artigo fundador da teoria da relatividade restrita: Sobre a eletrodinâ- mica dos corpos em movimento, Cadernos de Astronomia 1(1), 157–176 (2020).
J. Eisenstaedt, Histoire et singularités de la solution de Schwarzschild (1915-1923), Archive for History of Exact Science 27, 157 (1982).
L. Verstraelen, A concise mini history of geometry, Kragujevac Journal of Mathematics 38(1), 5–21 (2014). Disponível em https://imi.pmf.kg.ac.rs/kjm/ pub/14040466060549_1_a_concise_mini_ history_of_geometry.pdf, acesso em fev. 2023
K. Schwarzschild, Ueber das zulaessige Kruemmungsmaass des Raumes, Vierteljahrschrift d. Astronom. Gesellschaft 35, 337 (1900).
K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Kö- niglich Preußischen Akademie der Wissenschaften zu Berlin, phy.-math. Klasse 189–196 (1916).
K. Schwarzschild, Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Eisnteinschen Theorie, Sitzungsberichte der königlich Preussischen Akademie der Wissenschaften zu Berlin, phy.-math. Klasse 24, 424 (1916).
K. Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory (1999), translation by S. Antoci and A Loinger. ArXiv:physics/9905030.
K. Schwarzschild, On the gravitational field of a sphere of incompressible liquid, according to Einstein’s theory, The Abraham Zelmanov Journal 1 (2008), translation by Larissa Borissova and Dmitri Rabounski. Disponível em http://www.ptep-online.com/ zelmanov/papers/zj-2008-04.pdf, acesso em fev. 2023.
J. Droste, The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field, Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences 19, 197 (1917).
H. Weyl, Zur Gravitationstheorie, Annalen der Physik 359, 117 (1917).
H. Reissner, Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie, Annalen der Physik 355, 106 (1916).
G. Nordström, On the energy of the gravitation field in Einstein’s theory, Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences 20, 1238 (1918).
G. B. Jeffery, The field of an electron on Einstein’s theory of gravitation, Proceedings of the Royal Society of London Series A 99, 123 (1921).
O. R. Baldwin e G. B. Jeffery, The relativity theory of plane waves, Proceedings of the Royal Society of London Series A 111, 95 (1926).
L. C. B. Crispino, Expedição do Observató- rio Real de Greenwich para Sobral em 1919 - anotações tomadas pela Comissão Britâ- nica, Revista Brasileira de Ensino de Física 41 (2019).
C. Earman, John; Glymour, Relativity and Eclipses: the British eclipse expeditions of 1919 and their predecessors, Historical Studies in the Phisical Sciences 11(1), 49 (1980).
P. Painlevé, La mécanique classique et la theorie de la relativité, Académie de Sciences 6–9 (1921).
P. Painlevé, La gravitation dans la mé- canique de newton et dans la mécanique d’Einstein, Académie de Sciences 173(20), 873 (1921).
J. G. Ravin, Gullstrand, Einstein, and the Nobel Prize, Archives of Ophthalmology 117(5), 670 (1999).
A. Gullstrand, Allgemeine Lösung des Statischen Einkörperproblem in der Einsteinschen Gravitationstheorie, Arkiv för Matematik, Astronomi och Fysik 16(8), 1 (1921).
G. D. Birkhoff, Relativity and Modern Physics (Harvard University Press, 1923).
A. N. Whitehead, The principle of relativity with applications to physical science (Cambridge University Press, 1922).
A. S. Eddington, A comparison of Whitehead’s and Einstein’s formulæ, Nature 113(2832), 192 (1924).
A. S. Eddington, On the relation between the masses and luminosities of stars, Monthly Notices of the Royal Astronomical Society 84, 308 (1924).
C. R. Almeida, Stellar equilibrium vs. gravitational collapse, European Physical Journal H (2020).
G. Lemaître, L’univers en expansion, Annales de la Société Scientifique de Bruxelles A53(51) (1933).
Y. Hagihara, Theory of the relativistic trajectories in a gravitational field of Schwarzschild, Japanese Journal of Astronomy and Geophysics 8, 67 (1931).
H. P. Robertson e T. W. Noonan, Relativity and cosmology (Saunders, 1968).
A. Einstein e N. Rosen, The particle problem in the general theory of relativity, Physical Review 48, 73 (1935).
A. Einstein, On a stationary system with spherical symmetry consisting of many gravitating masses, Annals of Mathematics 40(4), 922 (1939).
J. R. Oppenheimer e R. Serber, On the stability of stellar neutron cores, Physical Review 54, 540 (1938).
J. R. Oppenheimer e G. Volkoff, On massive neutron cores, Physical Review 55, 374 (1939).
J. R. Oppenheimer e H. Snyder, On continued gravitational contraction, Physical Review 56, 455 (1939).
C. R. Almeida, A Pré-História dos Buracos Negros, Revista Brasileira de Ensino de Fí- sica 42 (2020).
J. L. Synge, The gravitational field of a particle, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences 53(6), 83 (1950). Disponível em https://www.jstor.org/stable/ 20488511, acesso em fev. 2023.
D. Finklestein, Past-future asymmetry of the gravitational field of a point particle, Physical Review 110, 965 (1958).
C. Fronsdal, Completion and embedding of the Schwarzschild solution, Physical Review 116, 778 (1959).
M. D. Kruskal, Maximal extension of Schwarzschild metric, Physical Review 119, 1743 (1960).
C. A. R. Herdeiro e J. P. S. Lemos, O buraco negro cinquenta anos depois: a génese do nome (2018). Disponível em https://www.spf.pt/magazines/GFIS/392/article/1087/pdf, acesso em fev. 2023.
G. Szekeres, On the singularities of a Riemannian manifold, Publicationes Mathematicae Debrecen 7, 285 (1960), reprinted on General Relativity and Gravitation, Vol. 34, No. 11, 2002.
A. S. Blum, R. Lalli e J. Renn, The renaissance of General Relativity : how and why it happened, Ann. Phys. 528(5), 344 (2016).
R. P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11, 237 (1963).
E. Newman, L. Tamburino e T. Unti, Emptyspace generalization of the schwarzschild metric, Journal of Mathematical Physics 4(7), 915 (1963).
E. T. Newman e A. I. Janis, Note on the kerr spinning-particle metric, Journal of Mathematical Physics 6(6), 915 (1965).
E. T. Newman et al., Metric of a rotating, charged mass, Journal of Mathematical Physics 6(6), 918 (1965).
R. H. Boyer e R. W. Lindquist, Maximal analytic extension of the kerr metric, Journal of Mathematical Physics 8(2), 265 (1967).
C. W. Misner, K. S. Thorne e J. A. Wheeler, Gravitation (W. H. Freeman, 1973).
W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164, 1776 (1967).
W. Israel, Event horizons in static electrovac space-times, Communications in Mathematical Physics 8, 245 (1968).
B. Carter, Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett. 26, 331 (1971)
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Carla Rodrigues Almeida
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.