Mapeamentos de galáxias

Autores

DOI:

https://doi.org/10.47456/Cad.Astro.v5n1.43769

Palavras-chave:

galáxias, astronomia, astrofísica, cosmologia

Resumo

Neste artigo, abordamos o desenvolvimento dos mapeamentos de galáxias e a sua importância para a astrofísica extragaláctica e para a cosmologia. Acompanhando a evolução dos telescópios, instrumentos e técnicas de observação astronômica desde o século XIX, discutimos como os avanços tecnológicos permitiram desvelar propriedades fundamentais do universo, tal como sua dinâmica, composição e sua estrutura em grande escala. Os mapeamentos de galáxias também revelaram a presença de matéria escura em diferentes escalas e seu impacto tanto na topologia da teia cósmica quanto nos processos de formação e evolução das galáxias. Observações das diferentes propriedades das galáxias individuais e suas correlações espaciais induzidas pelo ambiente local fornecem evidências para testar diferentes modelos físicos da interação gravitacional e seu impacto nos processos energéticos que contribuem para moldar os diferentes tipos de galáxias e suas características. Simulações de n-corpos possuem um papel crucial na reprodução da formação e evolução das estruturas cósmicas, permitindo contrastar as observações com universos simulados e testar teorias e hipóteses sobre a dinâmica do universo e a formação de galáxias. Em suma, a análise da estrutura em grande escala e dos efeitos ambientais na formação e evolução das galáxias ilustram a conexão complexa entre a cosmologia e a astrofísica modernas e ressalta a importância dos mapeamentos de galáxias para melhor entendê-las, apontando para o potencial de descobertas futuras à medida que as tecnologias e métodos observacionais continuem a evoluir.

Downloads

Não há dados estatísticos.

Biografia do Autor

Bruno Azevedo Lemos Moraes, Universidade Federal do Rio de Janeiro

B. A. L. Moraes é professor adjunto e pesquisador do Instituto de Física da UFRJ. É especialista em cosmologia observacional, área de pesquisa na interface entre a cosmologia e a astrofísica extragaláctica. Seu principal foco de pesquisa é na análise de mapeamentos de galáxias fotométricos e compreensão de contaminantes astrofísicos e observacionais, buscando vincular parâmetros cosmológicos e a massa de neutrinos. É membro do Rubin Observatory Legacy Survey of Space and Time por meio de seu Brazilian Participation Group (BPG-LSST).

Referências

[1] T. E. O. Rosse, Observations on the Nebulae, Philosophical Transactions of the Royal Society of London Series I 140, 499 (1850). DOI: https://doi.org/10.1098/rstl.1850.0026

[2] C. Messier, Catalogue des Nébuleuses et des Amas d’Étoiles (Imprimerie royale, Paris, 1781).

[3] J. F. W. Herschel, Catalogue of Nebulae and Clusters of Stars, Philosophical Transactions of the Royal Society of London 154, 1 (1864). DOI: https://doi.org/10.1098/rstl.1864.0001

[4] J. L. E. Dreyer, A New General Catalogue of Nebulae and Clusters of Stars, being the Catalogue of the late Sir John F.W. Herschel, Bart., revised, corrected, and enlarged, Memoirs of the Royal Astronomical Society 49, 1 (1888).

[5] J. L. E. Dreyer, Index Catalogue of Nebulae found in the years 1888 to 1894, with Notes and Corrections to the New General Catalogue, Memoirs of the Royal Astronomical Society 51, 185 (1895).

[6] J. L. E. Dreyer, Second Index Catalogue of Nebulae and Clusters of Stars; Containing Objects Found in the Years 1895 to 1907, with Notes and Corrections to the New General Catalogue and to the Index Catalogue for 1888–94, Memoirs of the Royal Astronomical Society 59, 105 (1908).

[7] J. Fraunhofer, Bestimmung des Brechungsund des Farbenzerstreungs-Vermögens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre, Annalen der Physik 56(7), 264 (1817). DOI: https://doi.org/10.1002/andp.18170560706

[8] G. Kirchhoff, Untersuchungen über das Sonnenspektrum und die Spectren der Chemischen Elemente (Part 1), Abhandlungen der königlich Preussischen Akademie der Wissenschaften zu Berlin 1, 63 (1861).

[9] G. Kirchhoff, Untersuchungen über das Sonnenspektrum und die Spectren der Chemischen Elemente (Part 1 continued), Abhandlungen der königlich Preussischen Akademie der Wissenschaften zu Berlin 1, 227 (1862).

[10] G. Kirchhoff, Untersuchungen über das Sonnenspektrum und die Spectren der Chemischen Elemente (Part 2), Abhandlungen der königlich Preussischen Akademie der Wissenschaften zu Berlin 1, 225 (1863).

[11] C. Doppler, Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels, Abhandlungen der Königlichen Böhmischen Gesellschaft der Wissenschaften 2, 465 (1842).

[12] M. S. Longair, The Cosmic Century: A History of Astrophysics and Cosmology (Cambridge University Press, 2006). DOI: https://doi.org/10.1017/CBO9781139878319

[13] H. S. Leavitt e E. C. Pickering, Periods of 25 Variable Stars in the Small Magellanic Cloud, Harvard College Observatory Circular 173, 1 (1912).

[14] E. P. Hubble, Cepheids in Spiral Nebulae, in Publications of the American Astronomical Society (1925), vol. 5 de Publications of the American Astronomical Society, 261– 264.

[15] E. P. Hubble, Extragalactic nebulae, The Astrophysical Journal 64, 321 (1926). DOI: https://doi.org/10.1086/143018

[16] E. P. Hubble, Realm of the Nebulae (Yale University Press, New Haven, 1936).

[17] V. M. Slipher, A Spectrographic Investigation of Spiral Nebulae, Proceedings of the American Philosophical Society 56, 403 (1917).

[18] E. Hubble, A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae, Proceedings of the National Academy of Science 15(3), 168 (1929). DOI: https://doi.org/10.1073/pnas.15.3.168

[19] E. Hubble e M. L. Humason, The VelocityDistance Relation among Extra-Galactic Nebulae, The Astrophysical Journal 74, 43 (1931). DOI: https://doi.org/10.1086/143323

[20] A. Sandage, The Hubble Atlas of Galaxies, Carnegie Institution of Washington Publication 618 (Carnegie Institution of Washington, Washington, 1961).

[21] A. Toomre e J. Toomre, Galactic Bridges and Tails, The Astrophysical Journal 178, 623 (1972). DOI: https://doi.org/10.1086/151823

[22] K. G. Jansky, Radio Waves from Outside the Solar System, Nature 132(3323), 66 (1933). DOI: https://doi.org/10.1038/132066a0

[23] G. Reber, Notes: Cosmic Static, The Astrophysical Journal 91, 621 (1940). DOI: https://doi.org/10.1086/144197

[24] F. Hoyle, A New Model for the Expanding Universe, Monthly Notices of the Royal Astronomical Society 108, 372 (1948). DOI: https://doi.org/10.1093/mnras/108.5.372

[25] J. Shakeshaft et al., A survey of radio sources between declinations –38° and +83°, Memoirs of the Royal Astronomical Society 67, 106 (1955).

[26] A. A. Penzias e R. W. Wilson, A Measurement of Excess Antenna Temperature at

Mc/s, The Astrophysical Journal 142, 419 (1965). DOI: https://doi.org/10.1086/148307

[27] I. Heywood, M. J. Jarvis e J. J. Condon, Sample variance, source clustering and their influence on the counts of faint radio sources, Monthly Notices of the Royal Astronomical Society 432(4), 2625 (2013). ArXiv:1302.2010. DOI: https://doi.org/10.1093/mnras/stt843

[28] D. Saadeh et al., How Isotropic is the Universe?, Physical Review Letters 117(13), 131302 (2016). ArXiv:1605.07178. DOI: https://doi.org/10.1103/PhysRevLett.117.131302

[29] C. D. Shane e C. A. Wirtanen, The distribution of extragalactic nebulae, The Astronomical Journal 59, 285 (1954). DOI: https://doi.org/10.1086/107014

[30] J. Neyman e E. L. Scott, A Theory of the Spatial Distribution of Galaxies, The Astrophysical Journal 116, 144 (1952). DOI: https://doi.org/10.1086/145599

[31] J. Neyman, E. L. Scott e C. D. Shane,

On the Spatial Distribution of Galaxies: a Specific Model, The Astrophysical Journal 117, 92 (1953). DOI: https://doi.org/10.1086/145671

[32] J. Neyman, E. L. Scott e C. D. Shane,

The Index of Clumpiness of the Distribution of Images of Galaxies, The Astrophysical Journal Supplement Series 1, 269 (1954). DOI: https://doi.org/10.1086/190008

[33] D. N. Limber, The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field, The Astrophysical Journal 117, 134 (1953). DOI: https://doi.org/10.1086/145672

[34] D. N. Limber, The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field II, The Astrophysical Journal 119, 655 (1954). DOI: https://doi.org/10.1086/145870

[35] V. C. Rubin, Fluctuations in the Space Distribution of the Galaxies, Proceedings of the National Academy of Science 40(7), 541 (1954). DOI: https://doi.org/10.1073/pnas.40.7.541

[36] V. J. Martínez e E. Saar, Statistics of the Galaxy Distribution (Chapman and Hall/CRC, 2002). DOI: https://doi.org/10.1201/9781420036169

[37] S. J. Maddox et al., Galaxy correlations on large scales, Monthly Notices of the Royal Astronomical Society 242, 43P (1990). DOI: https://doi.org/10.1093/mnras/242.1.43P

[38] M. Davis et al., A survey of galaxy redshifts. II. The large scale space distribution, The Astrophysical Journal 253, 423 (1982). DOI: https://doi.org/10.1086/159646

[39] J. Huchra et al., A survey of galaxy redshifts. IV The data, The Astrophysical Journal Supplement Series 52, 89 (1983). DOI: https://doi.org/10.1086/190860

[40] P. J. E. Peebles, Cosmology’s Century: An Inside History of our Modern Understanding of the Universe (Princeton University Press, 2020). DOI: https://doi.org/10.23943/princeton/9780691196022.001.0001

[41] P. J. E. Peebles, The large-scale structure of the universe (Princeton University Press, 1980). DOI: https://doi.org/10.1515/9780691206714

[42] M. Joeveer e J. Einasto, Has the Universe the Cell Structure?, in Large Scale Structures in the Universe, editado por M. S. Longair e J. Einasto (1978), vol. 79, 241. DOI: https://doi.org/10.1017/S0074180900144626

[43] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta 6, 110 (1933).

[44] G. O. Abell, The Distribution of Rich Clusters of Galaxies, The Astrophysical Journal Supplement Series 3, 211 (1958). DOI: https://doi.org/10.1086/190036

[45] T. S. van Albada et al., Distribution of dark matter in the spiral galaxy NGC 3198, The Astrophysical Journal 295, 305 (1985). DOI: https://doi.org/10.1086/163375

[46] C. S. Frenk, Galaxy Clustering and the Dark-Matter Problem, Philosophical Transactions of the Royal Society of London Series A 320(1556), 517 (1986). DOI: https://doi.org/10.1098/rsta.1986.0133

[47] H. Mo, F. C. van den Bosch e S. White, Galaxy Formation and Evolution (Cambridge University Press, 2010). DOI: https://doi.org/10.1017/CBO9780511807244

[48] V. C. Rubin e J. Ford, W. Kent, Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, The Astrophysical Journal 159, 379 (1970). DOI: https://doi.org/10.1086/150317

[49] D. H. Rogstad e G. S. Shostak, Gross Properties of Five Scd Galaxies as Determined from 21-Centimeter Observations, The Astrophysical Journal 176, 315 (1972). DOI: https://doi.org/10.1086/151636

[50] J. Einasto, A. Kaasik e E. Saar, Dynamic evidence on massive coronas of galaxies, Nature 250(5464), 309 (1974). DOI: https://doi.org/10.1038/250309a0

[51] J. P. Ostriker, P. J. E. Peebles e A. Yahil,

The Size and Mass of Galaxies, and the Mass of the Universe, The Astrophysical Journal 193, L1 (1974). DOI: https://doi.org/10.1086/181617

[52] V. C. Rubin, J. Ford, W. K. e N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc), The Astrophysical Journal 238, 471 (1980). DOI: https://doi.org/10.1086/158003

[53] G. Efstathiou, The clustering of galaxies and its dependence upon OMEGA, Monthly Notices of the Royal Astronomical Society 187, 117 (1979). DOI: https://doi.org/10.1093/mnras/187.2.117

[54] V. A. Lyubimov et al., An estimate of the νe mass from the β-spectrum of tritium in the valine molecule, Physics Letters B 94(2), 266 (1980). DOI: https://doi.org/10.1016/0370-2693(80)90873-4

[55] G. R. Blumenthal et al., Formation of galaxies and large-scale structure with cold dark matter, Nature 311, 517 (1984). DOI: https://doi.org/10.1038/311517a0

[56] S.D.M.White,C.S.FrenkeM.Davis, Clustering in a neutrino-dominated universe, The Astrophysical Journal 274, L1 (1983). DOI: https://doi.org/10.1086/184139

[57] M. Davis et al., The evolution of largescale structure in a universe dominated by cold dark matter, The Astrophysical Journal 292, 371 (1985). DOI: https://doi.org/10.1086/163168

[58] G. Bertone e D. Hooper, History of dark matter, Reviews of Modern Physics 90(4), 045002 (2018). ArXiv:1605.04909. DOI: https://doi.org/10.1103/RevModPhys.90.045002

[59] C. S. Frenk e S. D. M. White, Dark matter and cosmic structure, Annalen der Physik 524(9-10), 507 (2012). ArXiv:1210.0544. DOI: https://doi.org/10.1002/andp.201200212

[60] J. E. Gunn e I. Gott, J. Richard, On the Infall of Matter Into Clusters of Galaxies and Some Effects on Their Evolution, The Astrophysical Journal 176, 1 (1972). DOI: https://doi.org/10.1086/151605

[61] J. E. Gunn, The Friedmann Models and Optical Observations in Cosmology , in Saas-Fee Advanced Course 8: Observational Cosmology Advanced Course, editado por A. Maeder, L. Martinet e G. Tammann (1978).

[62] A. Dressler, Galaxy morphology in rich clusters: implications for the formation and evolution of galaxies, The Astrophysical Journal 236, 351 (1980). DOI: https://doi.org/10.1086/157753

[63] P. Schechter, An analytic expression for the luminosity function for galaxies, The Astrophysical Journal 203, 297 (1976). DOI: https://doi.org/10.1086/154079

[64] S. M. Faber e R. E. Jackson, Velocity dispersions and mass-to-light ratios for elliptical galaxies, The Astrophysical Journal 204, 668 (1976). DOI: https://doi.org/10.1086/154215

[65] S. Djorgovski e M. Davis, Fundamental Properties of Elliptical Galaxies, The Astrophysical Journal 313, 59 (1987). DOI: https://doi.org/10.1086/164948

[66] A. Dressler et al., Spectroscopy and Photometry of Elliptical Galaxies. I. New Distance Estimator, The Astrophysical Journal 313, 42 (1987). DOI: https://doi.org/10.1086/164947

[67] R. B. Tully e J. R. Fisher, A new method of determining distances to galaxies, Astronomy and Astrophysics 54, 661 (1977).

[68] D. Lynden-Bell, Statistical mechanics of violent relaxation in stellar systems, Monthly Notices of the Royal Astronomical Society 136, 101 (1967). DOI: https://doi.org/10.1093/mnras/136.1.101

[69] J. P. Ostriker e S. D. Tremaine, Another evolutionary correction to the luminosity of giant galaxies, The Astrophysical Journal 202, L113 (1975). DOI: https://doi.org/10.1086/181992

[70] A. Sandage e E. Hardy, The RedshiftDistance Relation. VII. Absolute Magnitudes on the First Three Ranked Cluster Galaxies as Functions of Cluster Richness and Bautz-Morgan Cluster Type: the Effect of q0, The Astrophysical Journal 183, 743 (1973). DOI: https://doi.org/10.1086/152263

[71] M. A. Hausman e J. P. Ostriker, Galactic cannibalism. III. The morphological evolution of galaxies and clusters, The Astrophysical Journal 224, 320 (1978). DOI: https://doi.org/10.1086/156380

[72] M. Bartelmann e P. Schneider, Weak gravitational lensing, Physics Reports 340(4-5), 291 (2001). ArXiv:astro-ph/9912508. DOI: https://doi.org/10.1016/S0370-1573(00)00082-X

[73] L. Van Waerbeke et al., Detection of correlated galaxy ellipticities from CFHT data: first evidence for gravitational lensing by large-scale structures, Astronomy and Astrophysics 358, 30 (2000). ArXiv: astro-ph/0002500.

[74] N. Kaiser, G. Wilson e G. A. Luppino, Large-Scale Cosmic Shear Measurements, arXiv (2000). ArXiv:astro-ph/0003338.

[75] D. J. Bacon, A. R. Refregier e R. S. Ellis, Detection of weak gravitational lensing by large-scale structure, Monthly Notices of the Royal Astronomical Society 318, 625 (2000). ArXiv:astro-ph/0003008. DOI: https://doi.org/10.1046/j.1365-8711.2000.t01-1-03851.x

[76] D. M. Wittman et al., Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales, Nature 405, 143 (2000). ArXiv: astro-ph/0003014. DOI: https://doi.org/10.1038/35012001

[77] M. Colless et al., The 2dF Galaxy Redshift Survey: Final Data Release, arXiv eprints astro-ph/0306581 (2003). ArXiv: astro-ph/0306581.

[78] D. G. York et al., The Sloan Digital Sky Survey: Technical Summary, The Astronomical Journal 120(3), 1579 (2000). ArXiv: astro-ph/0006396.

[79] V. Springel, C. S. Frenk e S. D. M. White, The large-scale structure of the Universe, Nature 440(7088), 1137 (2006). ArXiv: astro-ph/0604561. DOI: https://doi.org/10.1038/nature04805

[80] K. S. Dawson et al., The Baryon Oscillation Spectroscopic Survey of SDSS-III, The Astronomical Journal 145(1), 10 (2013). ArXiv:1208.0022.

[81] K. Bundy et al., Overview of the SDSSIV MaNGA Survey: Mapping nearby Galaxies at Apache Point Observatory, The Astrophysical Journal 798(1), 7 (2015). ArXiv:1412.1482.

[82] The Dark Energy Survey Collaboration, The Dark Energy Survey, arXiv, astro– ph/0510346 (2005).

[83] J. T. de Jong et al., The Kilo-Degree Survey, The Messenger 154, 44 (2013). DOI: https://doi.org/10.1007/s10686-012-9306-1

[84] R. Laureijs et al., Euclid Definition Study Report, arXiv, 1110.3193 (2011).

[85] R. Akeson et al., The Wide Field Infrared Survey Telescope: 100 Hubbles for the 2020s, arXiv, 1902.05569 (2019).

[86] Ž. Ivezić et al., LSST: From Science Drivers to Reference Design and Anticipated Data Products, The Astrophysical Journal 873(2), 111 (2019). ArXiv:0805.2366.

[87] DESI Collaboration, The DESI Experiment Part I: Science,Targeting, and Survey Design, arXiv, 1611.00036 (2016).

[88] L. Anderson et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples, Monthly Notices of the Royal Astronomical Society 441(1), 24 (2014). ArXiv:1312.4877.

[89] D. Huterer, Growth of cosmic structure, Astronomy and Astrophysics Review 31(1), 2 (2023). ArXiv:2212.05003. DOI: https://doi.org/10.1007/s00159-023-00147-4

[90] G. Efstathiou, W. J. Sutherland e S. J. Maddox, The cosmological constant and cold dark matter, Nature 348(6303), 705 (1990). DOI: https://doi.org/10.1038/348705a0

[91] A. G. Riess et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, The Astronomical Journal 116(3), 1009 (1998). ArXiv:astro-ph/9805201. DOI: https://doi.org/10.1086/300499

[92] S. Perlmutter et al., Measurements of Ω and Λ from 42 High-Redshift Supernovae, The Astrophysical Journal 517(2), 565 (1999). ArXiv:astro-ph/9812133. DOI: https://doi.org/10.1086/307221

[93] D. N. Spergel et al., First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, The Astrophysical Journal Supplement Series 148(1), 175 (2003). ArXiv:astro-ph/0302209. DOI: https://doi.org/10.1086/377226

[94] M. Vogelsberger et al., Cosmological simulations of galaxy formation, Nature Reviews Physics 2(1), 42 (2020). ArXiv:1909. 07976. DOI: https://doi.org/10.1038/s42254-019-0127-2

[95] S. Dodelson e F. Schmidt, Modern Cosmology (Academic Press, 2020).

[96] D. Baumann, Cosmology (Cambridge University Press, 2022). DOI: https://doi.org/10.1017/9781108937092

[97] C. Blake e K. Glazebrook, Probing Dark Energy Using Baryonic Oscillations in the Galaxy Power Spectrum as a Cosmological Ruler, The Astrophysical Journal 594(2), 665 (2003). ArXiv:astro-ph/0301632. DOI: https://doi.org/10.1086/376983

[98] D. J. Eisenstein et al., Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, The Astrophysical Journal 633(2), 560 (2005). ArXiv:astro-ph/ 0501171.

[99] N. Kaiser, Clustering in real space and in redshift space, Monthly Notices of the Royal Astronomical Society 227, 1 (1987). DOI: https://doi.org/10.1093/mnras/227.1.1

[100] M. Asgari, A. J. Mead e C. Heymans, The halo model for cosmology: a pedagogical review, The Open Journal of Astrophysics 6, 39 (2023). ArXiv:2303.08752. DOI: https://doi.org/10.21105/astro.2303.08752

[101] J. F. Navarro, C. S. Frenk e S. D. M. White, The Structure of Cold Dark Matter Halos, The Astrophysical Journal 462, 563 (1996). ArXiv:astro-ph/9508025. DOI: https://doi.org/10.1086/177173

[102] G. Kauffmann et al., Clustering of galaxies in a hierarchical universe I. Methods and results at z=0, Monthly Notices of the Royal Astronomical Society 303(1), 188 (1999). ArXiv:astro-ph/9805283. DOI: https://doi.org/10.1046/j.1365-8711.1999.02202.x

[103] V. Springel et al., Simulations of the formation, evolution and clustering of galaxies and quasars, Nature 435(7042), 629 (2005). ArXiv:astro-ph/0504097. DOI: https://doi.org/10.1038/nature03597

[104] M. Vogelsberger et al., Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe, Monthly Notices of the Royal Astronomical Society 444(2), 1518 (2014). ArXiv: 1405.2921. DOI: https://doi.org/10.1093/mnras/stu1536

[105] U. Seljak, Analytic model for galaxy and dark matter clustering, Monthly Notices of the Royal Astronomical Society 318(1), 203 (2000). ArXiv:astro-ph/0001493. DOI: https://doi.org/10.1046/j.1365-8711.2000.03715.x

[106] C.-P. Ma e J. N. Fry, Deriving the Nonlinear Cosmological Power Spectrum and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions, The Astrophysical Journal 543(2), 503 (2000). ArXiv:astro-ph/0003343. DOI: https://doi.org/10.1086/317146

[107] J. A. Peacock e R. E. Smith, Halo occupation numbers and galaxy bias, Monthly Notices of the Royal Astronomical Society 318(4), 1144 (2000). ArXiv:astro-ph/ 0005010. DOI: https://doi.org/10.1046/j.1365-8711.2000.03779.x

[108] S. D. M. White e M. J. Rees, Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering, Monthly Notices of the Royal Astronomical Society 183, 341 (1978). DOI: https://doi.org/10.1093/mnras/183.3.341

[109] R. H. Wechsler e J. L. Tinker, The Connection Between Galaxies and Their Dark Matter Halos, Annual Review of Astronomy and Astrophysics 56, 435 (2018). ArXiv: 1804.03097. DOI: https://doi.org/10.1146/annurev-astro-081817-051756

[110] J. Liske et al., Galaxy And Mass Assembly (GAMA): end of survey report and data release 2, Monthly Notices of the Royal Astronomical Society 452(2), 2087 (2015). ArXiv:1506.08222.

[111] M. R. Blanton e J. Moustakas, Physical Properties and Environments of Nearby Galaxies, Annual Review of Astronomy and Astrophysics 47(1), 159 (2009). ArXiv: 0908.3017. DOI: https://doi.org/10.1146/annurev-astro-082708-101734

[112] T. Naab e J. P. Ostriker, Theoretical Challenges in Galaxy Formation, Annual Review of Astronomy and Astrophysics 55(1), 59 (2017). ArXiv:1612.06891. DOI: https://doi.org/10.1146/annurev-astro-081913-040019

[113] R. S. Somerville e R. Davé, Physical Models of Galaxy Formation in a Cosmological Framework, Annual Review of Astronomy and Astrophysics 53, 51 (2015). ArXiv: 1412.2712. DOI: https://doi.org/10.1146/annurev-astro-082812-140951

[114] R. E. Angulo e O. Hahn, Large-scale dark matter simulations, Living Reviews in Computational Astrophysics 8(1), 1 (2022). ArXiv:2112.05165. DOI: https://doi.org/10.1007/s41115-021-00013-z

[115] E. Corbelli e P. Salucci, The extended rotation curve and the dark matter halo of M33, Monthly Notices of the Royal Astronomical Society 311(2), 441 (2000). ArXiv: astro-ph/9909252. DOI: https://doi.org/10.1046/j.1365-8711.2000.03075.x

[116] E. J. Groth e P. J. E. Peebles, Statistical analysis of catalogs of extragalactic objects. VII. Twoand three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies, The Astrophysical Journal 217, 385 (1977). DOI: https://doi.org/10.1086/155588

Downloads

Publicado

15-03-2024

Como Citar

[1]
B. A. L. Moraes, “Mapeamentos de galáxias”, Cad. Astro., vol. 5, nº 1, p. 39–65, mar. 2024.

Edição

Seção

Seção Temática