O mistério do Local Cosmic Void
DOI:
https://doi.org/10.47456/Cad.Astro.v5nEspecial.44878Palavras-chave:
Cosmologia, modelo padrão, local voidResumo
O Modelo ΛCDM-plano (Λ é a constante cosmológica e CDM, cold dark matter) é o que melhor se ajusta aos dados observacionais atualmente. Ele se fundamenta no Princípio Cosmológico, que assume a homogeneidade e a isotropia estatísticas do universo em larga escala. Estudando as propriedades desta última no Universo Local (UL) por meio do catálogo ALFALFA (Arecibo Legacy Fast ALFA Survey) – um levantamento que cobre ∼ 7000 deg2 do céu e conta com 31502 fontes extragalácticas de HI, distribuídas no intervalo 0 < z < 0.06 e divididas entre os hemisférios Norte e Sul Galácticos – encontramos resultados que indicam a existência de uma região contendo poucas galáxias, e que foi descrita pela primeira vez por Tully & Fischer (1987), ficando conhecida como Local Cosmic Void. Nossas análises são independentes de modelo e usam a função de correlação angular de dois pontos (2PACF) como aferidor estatístico, além de simulações do tipo lognormal (que consideram os parâmetros cosmológicos) para a estimativa das incertezas dos resultados. Para entender as propriedades e a morfologia da estrutura encontrada, fizemos testes com voids simulados, além de investigações comparativas com as descrições de voids do UL disponíveis na literatura. Nossos resultados indicam que o LCV possui contraste de densidade numérica δ ≃ −0.3, correspondente a uma subdensidade de ∼ 150 Mpc de comprimento e ∼ 60 Mpc de largura, características que concordam com a literatura.
Downloads
Referências
P. H. Coleman e L. Pietronero, The fractal structure of the universe, Physics Reports 213(6), 311 (1992). DOI: https://doi.org/10.1016/0370-1573(92)90112-D
D. W. Hogg et al., Cosmic Homogeneity Demonstrated with Luminous Red Galaxies, The Astrophysical Journal 624(1), 54 (2005). ArXiv:astro-ph/0411197. DOI: https://doi.org/10.1086/429084
P. Laurent et al., A 14 h−3 Gpc3 study of cosmic homogeneity using BOSS DR12 quasar sample, Journal of Cosmology and Astroparticle Physics 2016(11), 060 (2016). ArXiv:1602.09010. DOI: https://doi.org/10.1088/1475-7516/2016/11/060
S. Nadathur, Seeing patterns in noise: gigaparsec-scale ‘structures’ that do not violate homogeneity, Monthly Notices of the Royal Astronomical Society 434(1), 398 (2013). ArXiv:1306.1700. DOI: https://doi.org/10.1093/mnras/stt1028
P. Sarkar et al., The scale of homogeneity of the galaxy distribution in SDSS DR6, Monthly Notices of the Royal Astronomical Society 399(1), L128 (2009). ArXiv:0906.3431. DOI: https://doi.org/10.1111/j.1745-3933.2009.00738.x
S. Sarkar e B. Pandey, An information theory based search for homogeneity on the largest accessible scale, Monthly Notices of the Royal Astronomical Society 463(1), L12 (2016). ArXiv:1607.06194. DOI: https://doi.org/10.1093/mnrasl/slw145
M. I. Scrimgeour et al., The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity, Monthly Noticesof the Royal Astronomical Society 425(1), 116 (2012). ArXiv:1205.6812. DOI: https://doi.org/10.1111/j.1365-2966.2012.21402.x
F. Avila et al., The angular scale of homogeneity in the local Universe with the SDSS blue galaxies, Monthly Notices of the Royal Astronomical Society 488(1), 1481 (2019). ArXiv: 1906.10744. DOI: https://doi.org/10.1093/mnras/stz1765
B. Ryden, Introduction to cosmology (Cambridge University Press, New York, NY, 2003).
B. Schutz, A First Course in General Relativity (Cambridge University Press, New York, NY, 2009). DOI: https://doi.org/10.1017/CBO9780511984181
A. Bernui, Anomalous CMB north-south asymmetry, Physical Review D 78(6), 063531 (2008). ArXiv:0809.0934. DOI: https://doi.org/10.1103/PhysRevD.78.063531
P. K. Aluri e P. Jain, Parity asymmetry in the CMBR temperature power spectrum, Monthly Notices of the Royal Astronomical Society 419(4), 3378 (2012). ArXiv:1108.5894. DOI: https://doi.org/10.1111/j.1365-2966.2011.19981.x
G. A. Marques et al., Isotropy analyses of the Planck convergence map, Monthly Notices of the Royal Astronomical Society 473(1), 165 (2018). ArXiv:1708.09793. DOI: https://doi.org/10.1093/mnras/stx2240
M. I. Khan e R. Saha, Isotropy statistics of CMB hot and cold spots, JCAP 2022, 006 (2022). ArXiv:2111.05886. DOI: https://doi.org/10.1088/1475-7516/2022/06/006
M. Ishaque Khan e R. Saha, Level correlations of CMB temperature angular power spectrum, Journal of Astrophysics and Astronomy 43(2), 100 (2022). ArXiv:2101.06731. DOI: https://doi.org/10.1007/s12036-022-09893-w
C. E. Kester, A. Bernui e W. S. Hipólito-Ricaldi, Probing the statistical isotropy of the universe with Planck data of the cosmic microwave background, Astronomy & Astrophysics 683, A176 (2024). ArXiv:2310.02928. DOI: https://doi.org/10.1051/0004-6361/202348160
R. B. Tully e J. R. Fisher, Nearby galaxies Atlas (Cambridge University Press, New York, NY, 1987).
R. B. Tully et al., Cosmicflows-3: Cosmography of the Local Void, The Astrophysical Journal 880(1), 24 (2019). ArXiv:1905.08329. DOI: https://doi.org/10.3847/1538-4357/ab2597
J. R. Whitbourn e T. Shanks, The local hole revealed by galaxy counts and redshifts, Monthly Notices of the Royal Astronomical Society 437(3), 2146 (2014). ArXiv:1307.4405. DOI: https://doi.org/10.1093/mnras/stt2024
H. Böhringer, G. Chon e C. A. Collins, Observational evidence for a local underdensity in the Universe and its effect on the measurement of the Hubble constant, Astronomy & Astrophysics 633, A19 (2020). ArXiv:1907.12402. DOI: https://doi.org/10.1051/0004-6361/201936400
M. Plionis e S. Basilakos, The size and shape of local voids, Monthly Notices of the Royal Astronomical Society 330(2), 399 (2002). ArXiv:astro-ph/0106491. DOI: https://doi.org/10.1046/j.1365-8711.2002.05069.x
R. B. Tully et al., Our Peculiar Motion Away from the Local Void, The Astrophysical Journal 676(1), 184 (2008). ArXiv:0705.4139. DOI: https://doi.org/10.1086/527428
R. B. Tully et al., Cosmicflows-2: The Data, The Astronomical Journal 146(4), 86 (2013). ArXiv:1307.7213. DOI: https://doi.org/10.1088/0004-6256/146/4/86
J. R. Whitbourn e T. Shanks, The galaxy luminosity function and the Local Hole, Monthly Notices of the Royal Astronomical Society 459(1), 496 (2016). ArXiv:1603.02322. DOI: https://doi.org/10.1093/mnras/stw555
R. C. Keenan, A. J. Barger e L. L. Cowie, Evidence for a ~300 Megaparsec Scale Underdensity in the Local Galaxy Distribution, The Astrophysical Journal 775(1), 62 (2013). ArXiv:1304.2884. DOI: https://doi.org/10.1088/0004-637X/775/1/62
Y. Hoffman et al., The dipole repeller, Nature Astronomy 1, 0036 (2017). ArXiv:1702.02483. DOI: https://doi.org/10.1038/s41550-016-0036
C. Franco, F. Avila e A. Bernui, Probing cosmic isotropy in the Local Universe, Monthly Notices of the Royal Astronomical Society 527(3), 7400 (2024). ArXiv:2312.03152. DOI: https://doi.org/10.1093/mnras/stad3616
M. P. Haynes et al., The Arecibo Legacy Fast ALFA Survey: The ALFALFA Extragalactic H I Source Catalog, The Astrophysical Journal 861(1), 49 (2018). ArXiv:1805.11499.
E. M. Papastergis, Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology, Tese de Doutorado, Cornell University, New York (2013).
F. Avila et al., The scale of homogeneity in the local Universe with the ALFALFA catalogue, JCAP 12(12), 041 (2018). ArXiv:1806.04541. DOI: https://doi.org/10.1088/1475-7516/2018/12/041
J. G. Cresswell e W. J. Percival, Scale-dependent galaxy bias in the Sloan Digital Sky Survey as a function of luminosity and colour, Monthly Notices of the Royal Astronomical Society 392(2), 682 (2009). ArXiv:0808.1101. DOI: https://doi.org/10.1111/j.1365-2966.2008.14082.x
M. G. Jones et al., Environmental dependence of the H I mass function in the ALFALFA 70% catalogue, Monthly Notices of the Royal Astronomical Society 457(4), 4393 (2016). ArXiv:1510.07050. DOI: https://doi.org/10.1093/mnras/stw263
H. M. Courtois et al., Cosmography of the Local Universe, The Astronomical Journal 146(3), 69 (2013). ArXiv:1306.0091. DOI: https://doi.org/10.1088/0004-6256/146/3/69
P. J. E. Peebles, The Large-Scale Structure of the Universe (Princeton University Press, Princeton, New Jersey, 1981). DOI: https://doi.org/10.1515/9780691206714
N. Kaiser, Clustering in real space and in redshift space, Monthly Notices of the Royal Astronomical Society 227, 1 (1987). DOI: https://doi.org/10.1093/mnras/227.1.1
K. L. Masters, Galaxy Flows in and around the Local Supercluster, Tese de Doutorado, Cornell University, New York (2005).
A. Bernui, T. Villela e I. Ferreira, Analysis of the Angular Distribution of Cosmic Objects, International Journal of Modern Physics D 13(7), 1189 (2004). DOI: https://doi.org/10.1142/S0218271804005304
E. de Carvalho et al., Angular Baryon Acoustic Oscillation measure at z=2.225 from the SDSS quasar survey, Journal of Cosmology and Astroparticle Physics 2018(4), 064 (2018). ArXiv:1709.00113. DOI: https://doi.org/10.1088/1475-7516/2018/04/064
E. de Carvalho, Oscilações acústicas bariônicas nas distribuições de quasares e galáxias azuis, Tese de Doutorado, Observatório Nacional, Rio de Janeiro (2019).
Y. Wang, R. J. Brunner e J. C. Dolence, The SDSS galaxy angular two-point correlation function, Monthly Notices of the Royal Astronomical Society 432(3), 1961 (2013). ArXiv:1303.2432. DOI: https://doi.org/10.1093/mnras/stt450
E. Keihänen et al., Estimating the galaxy two-point correlation function using a split random catalog, Astronomy & Astrophysics 631, A73 (2019). ArXiv:1905.01133. DOI: https://doi.org/10.1051/0004-6361/201935828
A. Agrawal et al., Generating log-normal mock catalog of galaxies in redshift space, Journal of Cosmology and Astroparticle Physics 2017(10), 003 (2017). ArXiv:1706.09195. DOI: https://doi.org/10.1088/1475-7516/2017/10/003
Planck Collaboration et al., Planck 2018 results. VI. Cosmological parameters, Astronomy & Astrophysics 641, A6 (2020). ArXiv:1807.06209. DOI: https://doi.org/10.1051/0004-6361/202039265
P. Norberg et al., Statistical analysis of galaxy surveys - I. Robust error estimation for two-point clustering statistics, Monthly Notices of the Royal Astronomical Society 396(1), 19 (2009). ArXiv:0810.1885. DOI: https://doi.org/10.1111/j.1365-2966.2009.14389.x
E. de Carvalho et al., Baryon acoustic oscillations signature in the three-point angular correlation function from the SDSS-DR12 quasar survey, Monthly Notices of the Royal Astronomical Society 492(3), 4469 (2020). ArXiv:2002.01109. DOI: https://doi.org/10.1093/mnras/staa119
G. A. Marques e A. Bernui, Tomographic analyses of the CMB lensing and galaxy clustering to probe the linear structure growth, Journal of Cosmology and Astroparticle Physics 05(5), 052 (2020). ArXiv:1908.04854. DOI: https://doi.org/10.1088/1475-7516/2020/05/052
F. Avila et al., The growth rate of cosmic structures in the local Universe with the ALFALFA survey, Monthly Notices of the Royal Astronomical Society 505(3), 3404 (2021). ArXiv: 2105.10583. DOI: https://doi.org/10.1093/mnras/stab1488
F. Avila et al., The homogeneity scale and the growth rate of cosmic structures, Monthly Notices of the Royal Astronomical Society 509(2), 2994 (2022). ArXiv:2111.08541. DOI: https://doi.org/10.1093/mnras/stab3122
F. Avila et al., Inferring S8(z ) and γ (z ) with cosmic growth rate measurements using machine learning, European Physical Journal C 82(7), 594 (2022). ArXiv:2201.07829. DOI: https://doi.org/10.1140/epjc/s10052-022-10561-0
F. Oliveira et al., Reconstructing the growth index γ with Gaussian Processes, arXiv e-prints arXiv:2311.14216 (2023). ArXiv:2311.14216.
F. Avila et al., Baryon acoustic scale at z_eff= 0.166 with the SDSS blue galaxies, Monthly Notices of the Royal Astronomical Society 529(4), 4980 (2024). ArXiv:2404.00747. DOI: https://doi.org/10.1093/mnras/stae867
P. J. E. Peebles, Principles of Physical Cosmology (Princeton University Press, Princeton, N.J, 1993).
G. B. Lima Neto, Astronomia Extragaláctica, Notas de aula (2022). Disponível em http://www.astro.iag.usp.br/~gastao/Extragal.html, acesso em jan. 2024.
P. C. Hewett, The estimation of galaxy angular correlation functions, Monthly Notices of the Royal Astronomical Society 201, 867 (1982). DOI: https://doi.org/10.1093/mnras/201.4.867
P. J. E. Peebles e M. G. Hauser, Statistical Analysis of Catalogs of Extragalactic Objects. III. The Shane-Wirtanen and Zwicky Catalogs, Astrophysical Journal Supplement 28, 19 (1974). DOI: https://doi.org/10.1086/190308
M. Davis e P. J. E. Peebles, A survey of galaxy redshifts. V. The two-point position and velocity correlations., Astrophysical Journal 267, 465 (1983). DOI: https://doi.org/10.1086/160884
S. D. Landy e A. S. Szalay, Bias and Variance of Angular Correlation Functions, Astrophysical Journal 412, 64 (1993). DOI: https://doi.org/10.1086/172900
E. de Carvalho et al., BAO angular scale at z_eff= 0.11 with the SDSS blue galaxies, Astronomy & Astrophysics 649, A20 (2021). ArXiv:2103.14121. DOI: https://doi.org/10.1051/0004-6361/202039936
A. D. Myers et al., On statistical lensing and the anticorrelation between 2dF QSOs and foreground galaxies, Monthly Notices of the Royal Astronomical Society 359(2), 741 (2005). ArXiv:astro-ph/0502481. DOI: https://doi.org/10.1111/j.1365-2966.2005.08955.x
L. Wasserman, Random Variables (Springer New York, New York, NY, 2004). Disponível em https://doi.org/10.1007/978-0-387217369_2.
C. M. Moorman et al., The H I mass function and velocity width function of void galaxies in the Arecibo Legacy Fast ALFA Survey, Monthly Notices of the Royal Astronomical Society 444(4), 3559 (2014). ArXiv:1408.3392. DOI: https://doi.org/10.1093/mnras/stu1674
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 C. Franco, F. Avila, A. Bernui
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.