A formação do nosso Sistema Solar e a diversidade planetária da nossa galáxia
DOI:
https://doi.org/10.47456/Cad.Astro.v5n2.46010Palavras-chave:
sistema solar, formação, planetas, exoplanetasResumo
O Sistema Solar é o único, entre os bilhões de sistemas planetários previstos em nossa Galáxia, que até agora sabemos hospedar vida. Morada do Sol, da Lua, da Terra e de outros sete planetas, sua formação começou há aproximadamente 4,56 bilhões de anos. Este artigo propõe uma recapitulação da formação do Sistema Solar, detalhando os principais passos desse processo, começando com uma nuvem de gás na nossa Galáxia e seguindo para o nascimento do Sol, a formação de planetas como Júpiter e a Terra, e as origens de corpos celestes menores, como luas, asteroides e cometas. As teorias atuais são fundamentadas tanto em observações do nosso próprio Sistema Solar quanto em estudos de outros sistemas planetários com diferentes idades e localizações na Galáxia. A análise do nosso Sistema Solar no contexto de outros sistemas planetários destaca como essas comparações são cruciais para aprofundar nossa compreensão sobre os processos de formação e evolução planetária.
Downloads
Referências
S. Pfalzner et al., The formation of the solar system, Physica Scripta 90(6), 068001 (2015). DOI: https://doi.org/10.1088/0031-8949/90/6/068001
M. Xiang e H.-W. Rix, A time-resolved picture of our Milky Way’s early formation history, Nature 603(7902), 599 (2022). DOI: https://doi.org/10.1038/s41586-022-04496-5
National Aeronautics and Space Administration, California Institute of Technology e Exoplanet Exploration Program, NASA Exoplanet Archive. Disponível em https://exoplanetarchive.ipac.caltech.edu/index.html, acesso em ago. 2024.
NASA Science Activation program, Basics of Space Flight Chapter 1: The Solar System. Disponível em https://science.nasa.gov/learn/basics-of-space-flight/chapter1-1/, acesso em jul. 2024.
S. N. Raymond, The Solar System: structural overview, origins and evolution (2024). ArXiv:2404.14982. DOI: https://doi.org/10.1016/B978-0-443-21439-4.00008-0
D. R. Williams, NASA: Planetary Fact Sheet Metric. Disponível em https://nssdc.gsfc.nasa.gov/planetary/factsheet/, acesso em ago. 2024.
F. C. Adams, The birth environment of the solar system, Annual Review of Astronomy and Astrophysics 48(1), 47 (2010). DOI: https://doi.org/10.1146/annurev-astro-081309-130830
M. Marov, The Formation and Evolution of the Solar System, Oxford Research Encyclopedia of Planetary Science (2018). DOI: https://doi.org/10.1093/acrefore/9780190647926.013.2
NASA Science, Finding Planetary Construction Zones. Disponível em https://science.nasa.gov/mission/hubble/science/science-highlights/ finding-planetary-construction-zones/, acesso em ago. 2024.
T. Lichtenberg et al., Bifurcation of planetary building blocks during Solar System formation, Science 371(6527), 365 (2021). DOI: https://doi.org/10.1126/science.abb3091
P. J. Armitage, Astrophysics of Planet Formation (Cambridge University Press, 2020). DOI: https://doi.org/10.1017/9781108344227
A. Johansen e M. Lambrechts, Forming planets via pebble accretion, Annual Review of Earth and Planetary Sciences 45(1), 359 (2017). DOI: https://doi.org/10.1146/annurev-earth-063016-020226
J. P. Williams e L. A. Cieza, Protoplanetary disks and their evolution, Annual Review of Astronomy and Astrophysics 49(1), 67 (2011). DOI: https://doi.org/10.1146/annurev-astro-081710-102548
J. B. Pollack et al., Formation of the giant planets by concurrent accretion of solids and gas, icarus 124(1), 62 (1996). DOI: https://doi.org/10.1006/icar.1996.0190
W. Kley e R. Nelson, Planet-disk interaction and orbital evolution, Annual Review of Astronomy and Astrophysics 50(1), 211 (2012). DOI: https://doi.org/10.1146/annurev-astro-081811-125523
R. M. Canup, Simulations of a late lunar forming impact, Icarus 168(2), 433 (2004). DOI: https://doi.org/10.1016/j.icarus.2003.09.028
W. Benz, W. Slattery e A. Cameron, The origin of the Moon and the single-impact hypothesis I, Icarus 66(3), 515 (1986). DOI: https://doi.org/10.1016/0019-1035(86)90088-6
J. M. D. Day e M. Paquet, Temporally limited late accretion after core formation in the Moon, Meteoritics & Planetary Science 56(4), 683 (2021). DOI: https://doi.org/10.1111/maps.13646
R. J. Walker, Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation, Geochemistry 69(2), 101 (2009). DOI: https://doi.org/10.1016/j.chemer.2008.10.001
E. Kokubo, S. Ida e J. Makino, Evolution of a circumterrestrial disk and formation of a single Moon, Icarus 148(2), 419 (2000). DOI: https://doi.org/10.1006/icar.2000.6496
F. DeMeo e B. Carry, The taxonomic distribution of asteroids from multi-filter allsky photometric surveys, Icarus 226(1), 723 (2013). DOI: https://doi.org/10.1016/j.icarus.2013.06.027
F. E. DeMeo et al., The compositional structure of the asteroid belt, in Asteroids IV, editado por P. Michel, F. E. DeMeo e W. F. Bottke (University of Arizona Press, 2015), 13–42. DOI: https://doi.org/10.2458/azu_uapress_9780816532131-ch002
D. Nesvorny et al., Isotopic trichotomy of main belt asteroids from implantation of outer solar system planetesimals, Earth and Planetary Science Letters 626, 118521 (2024). DOI: https://doi.org/10.1016/j.epsl.2023.118521
W. C. Fraser et al., The Transition from the Kuiper Belt to the Jupiter-Family (Comets) (2022). ArXiv:2210.16354.
A. Morbidelli e D. Nesvorny, Kuiper belt: formation and evolution, in The TransNeptunian Solar System, editado por D. Prialnik, M. A. Barucci e L. A. Young (Elsevier, 2020), 25–59. DOI: https://doi.org/10.1016/B978-0-12-816490-7.00002-3
A. Di Ruscio et al., Analysis of Cassini radio tracking data for the construction of INPOP19a: A new estimate of the Kuiper belt mass, Astronomy & Astrophysics 640, A7 (2020). DOI: https://doi.org/10.1051/0004-6361/202037920
J. H. Oort, The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin, BAIN 11, 91 (1950).
S. Torres et al., Galactic tide and local stellar perturbations on the Oort cloud: creation of interstellar comets, Astronomy & Astrophysics 629, A139 (2019). DOI: https://doi.org/10.1051/0004-6361/201935330
D. Jewitt, Kuiper Belt and comets: An observational perspective, in Trans-Neptunian Objects and Comets, editado por D. Jewitt, A. Morbidelli e H. Rauer (Springer, 2008), 1–78. DOI: https://doi.org/10.1007/978-3-540-71958-8_1
A. Wolszczan e D. A. Frail, A planetary system around the millisecond pulsar PSR1257 + 12, Nature 355(6356), 145 (1992). DOI: https://doi.org/10.1038/355145a0
M. Mayor e D. Queloz, A Jupiter-mass companion to a solar-type star, nature 378(6555), 355 (1995). DOI: https://doi.org/10.1038/378355a0
The Nobel Prize in Physics 2019. Disponível em https://www.nobelprize.org/prizes/physics/2019/summary/, acesso em ago. 2024.
J. N. Winn, Exoplanet transits and occultations, in Exoplanets, editado por S. Seager (University of Arizona Press, 2010), 55–77. ArXiv:1001.2010.
C. Lovis e D. Fischer, Radial velocity techniques for exoplanets, in Exoplanets, editado por S. Seager (University of Arizona Press, 2010), 27–53.
S. Mao e B. Paczynski, Gravitational microlensing by double stars and planetary systems, The Astrophysical Journal 374, L37 (1991). DOI: https://doi.org/10.1086/186066
G. Chauvin et al., A giant planet candidate near a young brown dwarf-direct VLT/NACO observations using IR wavefront sensing, Astronomy & Astrophysics 425(2), L29 (2004). DOI: https://doi.org/10.1051/0004-6361:200400056
D. P. Bennett e S. H. Rhie, Detecting Earth-mass planets with gravitational microlensing, The Astrophysical Journal 472(2), 660 (1996). DOI: https://doi.org/10.1086/178096
A. Gould e A. Loeb, Discovering Planetary Systems through Gravitational Microlenses, The Astrophysical Journal 396, 104 (1992). DOI: https://doi.org/10.1086/171700
J. J. Lissauer, Planet formation, Annual review of astronomy and astrophysics 31(1), 129 (1993). DOI: https://doi.org/10.1146/annurev.astro.31.1.129
S. Ida e D. N. Lin, Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets, The Astrophysical Journal 604(1), 388 (2004). DOI: https://doi.org/10.1086/381724
G. M. Kennedy, S. J. Kenyon e B. C. Bromley, Planet formation around low-mass stars: the moving snow line and super-Earths, The Astrophysical Journal 650(2), L139 (2006). DOI: https://doi.org/10.1086/508882
M. Ali-Dib, A. Cumming e D. N. C. Lin, The effect of late giant collisions on the atmospheres of protoplanets and the formation of cold sub-Saturns, Monthly Notices of the Royal Astronomical Society 509(1), 1413 (2022). DOI: https://doi.org/10.1093/mnras/stab3008
M. T. Penny et al., Predictions of the WFIRST Microlensing Survey. I. Bound Planet Detection Rates, The Astrophysical Journal Supplement Series 241(1), 3 (2019). ArXiv:1808.02490. DOI: https://doi.org/10.3847/1538-4365/aafb69
T. Sumi et al., Free-floating Planet Mass Function from MOA-II 9 yr Survey toward the Galactic Bulge, The Astronomical Journal 166(3), 108 (2023). ArXiv:2303.08280. DOI: https://doi.org/10.3847/1538-3881/ace688
N. Koshimoto et al., Terrestrialand Neptune-mass Free-Floating Planet Candidates from the MOA-II 9 yr Galactic Bulge Survey, The Astronomical Journal 166(3), 107 (2023). ArXiv:2303.08279. DOI: https://doi.org/10.3847/1538-3881/ace689
S. G. Pearson e M. J. McCaughrean, Jupiter mass binary objects in the Trapezium cluster (2023). ArXiv:2310.01231.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Stela Ishitani Silva
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.