Formation and evolution of large-scale structures from the perspective of halo models
DOI:
https://doi.org/10.47456/Cad.Astro.v6n2.48290Keywords:
power matter spectrum, large scale structure, halo models, cosmological parameter inferenceAbstract
The current era of large-scale structure research, driven by projects such as DESI, Euclid, and LSST, demands efficient methods for modeling and interpreting vast datasets. The matter power spectrum, P(k, z), is a central statistical estimator in these efforts, but its modeling on nonlinear scales remains an ongoing challenge in the literature. In this context, halo models provide a powerful approach by associating the distribution of matter with halos of different masses. Widely used in tools such as HALOFIT and HM-CODE, these models play a fundamental role in data analysis and cosmological parameter inference. This article aims to provide an introductory and didactic resource that reviews the essential components of halo models, highlighting their advantages, such as flexibility beyond the standard ΛCDM model, and their impact on galaxy property predictions, observational studies, and theoretical modeling. The review is presented in a clear and accessible manner, aiming to introduce this approach, which will become increasingly indispensable in modern cosmology.
References
[1] M. Abdul Karim et al., DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints (2025). ArXiv:2503.14738.
[2] Y. Mellier et al., Euclid. I. Overview of the Euclid mission, Astronomy & Astrophysics 697, A1 (2025). ArXiv:2405.13491.
[3] Q. Hang et al., Impact of survey spatial variability on galaxy redshift distributions and the cosmological 3×2-point statistics for the Rubin Legacy Survey of Space and Time (LSST), Monthly Notices of the Royal Astronomical Society 535(4), 2970 (2024). ArXiv: 2409.02501.
[4] S. Dodelson e F. Schmidt, Modern cosmology (Academic press, 2020).
[5] A. Chudaykin et al., Nonlinear perturbation theory extension of the Boltzmann code CLASS, Phys. Rev. D 102(6), 063533 (2020). ArXiv:2004.10607.
[6] J. Dakin, S. Hannestad e T. Tram, The cosmological simulation code CONCEPT 1.0, Monthly Notices of the Royal Astronomical Society 513(1), 991 (2022). ArXiv: 2112.01508.
[7] A. J. Mead et al., An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models, Monthly Notices of the Royal Astronomical Society 454(2), 1958 (2015). ArXiv:1505.07833.
[8] J. A. Peacock e R. E. Smith, HALOFIT: Nonlinear distribution of cosmological mass and galaxies, Astrophysics Source Code Library, record ascl:1402.032 (2014). Disponível em https://ascl.net/1402.032, acesso em set. 2025.
[9] M. Asgari, A. J. Mead e C. Heymans, The halo model for cosmology: a pedagogical review, The Open Journal of Astrophysics 6 (2023).
[10] A. H. Wright et al., KiDS-Legacy: Cosmological constraints from cosmic shear with the complete Kilo-Degree Survey (2025). ArXiv:2503.19441.
[11] E. Di Valentino et al., The CosmoVerse White Paper: Addressing observational tensions in cosmology with systematics and fundamental physics, Physics of the Dark Universe 49, 101965 (2025). ArXiv:2504.01669.
[12] L. Hernquist, An analytical model for spherical galaxies and bulges, Astrophys. J. 356, 359 (1990). ArXiv:10.1086/168845.
[13] J. F. Navarro, C. S. Frenk e S. D. M. White, A Universal Density Profile from Hierarchical Clustering, The Astrophysical Journal 490(2), 493 (1997).
[14] J. Einasto, On the Construction of a Composite Model for the Galaxy and on the Determination of the System of Galactic Parameters, Trudy Astrofizicheskogo Instituta Alma-Ata 5, 87 (1965).
[15] D. Merritt et al., Empirical Models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models, The Astronomical Journal 132(6), 2685 (2006).
[16] Press, William H. and Schechter, Paul, Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, Astrophys. J. 187, 425 (1974).
[17] Z. Zheng et al., Theoretical models of the halo occupation distribution: Separating central and satellite galaxies, Astrophys. J. 633, 791 (2005). ArXiv:astro-ph/0408564.
[18] E. Silva et al., New Constraints on Interacting Dark Energy from DESI DR2 BAO Observations, Physical Review D 111(12) (2025). ArXiv:2503.23225.
[19] E. Silva et al., Non-linear matter power spectrum modeling in interacting dark energy cosmologies, Eur. Phys. J. C 84(10), 1104 (2024). ArXiv:2403.19590.
[20] A. Schneider et al., Nonlinear Evolution of Cosmological Structures in Warm Dark Matter Models, Mon. Not. Roy. Astron. Soc. 424, 684 (2012). ArXiv:1112.0330.
[21] K. Heitmann et al., The Mira-Titan Universe: Precision Predictions for Dark Energy Surveys, Astrophys. J. 820(2), 108 (2016). ArXiv:1508.02654.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Emanuelly Silva, Rafael C. Nunes

This work is licensed under a Creative Commons Attribution 4.0 International License.



