O paradoxo da (des)informação em buracos negros

Autores

  • André G. S. Landulfo Universidade Federal do ABC

DOI:

https://doi.org/10.47456/Cad.Astro.v6n2.49480

Palavras-chave:

buracos negros, radiação de Hawking, evaporação de buracos negros, informação quântica, paradoxo da informação

Resumo

Em 1974, uma descoberta abalou a comunidade científica. Stephen Hawking mostrou que, quando levamos a mecânica quântica em consideração, buracos negros não são negros mas emitem radiação térmica, como medido por observadores estacionários muito longe do buraco negro. Desde então, o consequente processo de evaporação do buraco negro gerou um debate que divide os físicos até hoje: o que acontece com a informação que caiu no buraco negro? No presente artigo, iremos revisar o processo de evaporação de buraco negro mostrando, em particular, que não há nada paradoxal com a perda de informação ao final. Em seguida, analisaremos as alternativas à perda de informação destacando seus prós e contras.

Biografia do Autor

  • André G. S. Landulfo, Universidade Federal do ABC

    Possui bacharelado em física pelo Instituto de Física da Universidade de São Paulo (IFUSP/USP) e é doutor em física pelo Instituto de Física Teórica (IFT/UNESP). Atualmente é Professor Adjunto na Universidade Federal do ABC (UFABC). Realiza pesquisa na área de Física, com ênfase em Relatividade Geral, Teoria Quântica de Campos em Espaços-Tempos Curvos, Informação Quântica e sua interface com a Teoria da Relatividade.

Referências

[1] A.G.S.Landulfo,G.E.A.MatsaseD.A.T. Vanzella, Buracos negros: Rompendo os limites da ficção (Editora da UNESP, São Paulo, 2021).

[2] A. Einstein, Die Feldgleichungen der Gravitation, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin 1915, 844 (1915).

[3] K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie , SitzungsberichtederKöniglich Preussischen Akademie der Wissenschaften 7, 189 (1916).

[4] A. Einstein, On a Stationary System with Spherical Symmetry Consisting of Many Gravitating Masses , The Annals of Mathematics 40(4), 922 (1939).

[5] J. R. Oppenheimer e H. Snyder, On Continued Gravitational Contraction , Physical Review 56(5), 455 (1939).

[6] S. Chandrasekhar, The Maximum Mass of Ideal White Dwarfs , Astrophysical Journal 74, 81 (1931).

[7] B. L. Webster e P. Murdin, Cygnus X-1—a Spectroscopic Binary with a Heavy Companion?, Nature 235, 37 (1972).

[8] R. Penrose, Gravitational Collapse and Space-Time Singularities , Physical Review Letters 14(3), 57 (1965).

[9] S. W. Hawking, Black holes in general relativity, Communications in Mathematical Physics25(2), 152 (1972).

[10] J. M. Bardeen, B. Carter e S. W. Hawking,The Four Laws of Black Hole Mechanics, CommunicationsinMathematicalPhysics31(2), 161 (1973).

[11] J. D. Bekenstein, Black Holes and Entropy , Physical Review D 7(8), 2333 (1973).

[12] R. M. Wald, The Thermodynamics of Black Holes, Living Reviews in Relativity 4, 6 (2001).

[13] S. W. Hawking, Black hole explosions? , Nature248(5443), 30 (1974).

[14] R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics(University of Chicago Press, Chicago, 1994).

[15] S. W. Hawking, Particle Creation by Black Holes, Communications in Mathematical Physics 43(3), 199 (1975).

[16] R. M. Wald, On Particle Creation by Black Holes, Communications in Mathematical Physics 45(1), 9 (1975).

[17] W. G. Unruh e R. M. Wald, Acceleration radiation and the generalized second law of thermodynamics , Physical Review D 25(4), 942 (1982).

[18] A. C. Wall, Ten proofs of the generalized second law , Journal of High Energy Physics 2009(06), 021 (2009).

[19] A. C. Wall, The Generalized Second Law implies a Quantum Singularity Theorem , Classical and Quantum Gravity 30(16), 165003 (2013).

[20] R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984).

[21] S. W. Hawking e G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973).

[22] R. Penrose, Structure of Spacetime , inBattelle Rencontres , editado por C. M. DeWitt e J. A. Wheeler (W. A. Benjamin Inc., New York, 1968), 121–235.

[23] V. Iyer e R. M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy , Physical Review D 50(2), 846 (1994).

[24] M. M. Wilde, Quantum Information Theory (Cambridge University Press, Cambridge, 2013).

[25] R. M. Wald, Black holes, singularities, and predictability , inQuantum Theory of Gravity – Essays in honor of the 60th birthday of B. S. DeWitt (Adam Hilger, Bristol, 1984).

[26] J. V. O. Pêgas et al., Globally hyperbolic evaporating black hole and the information loss issue , Class. Quant. Grav. 42(6), 065009 (2025). ArXiv:2402.19140 .

[27] W. G. Unruh e R. M. Wald, Information loss, Reports on Progress in Physics 80(9), 092002 (2017).

[28] S. D. Mathur, The information paradox: A pedagogical introduction , Classical and Quantum Gravity 26(22), 224001 (2009).

[29] A. Almheiri et al., The entropy of Hawking radiation , Reviews of Modern Physics 93(3), 035002 (2021).

[30] J. Preskill, Do black holes destroy information?, inInternational Symposium on Black holes, Membranes, Wormholes and Superstrings(1992). ArXiv:hep-th/9209058 .

[31] D. Wallace, Why Black Hole Information Loss is Paradoxical (2020), 209–236. ArXiv: 1710.03783 .

[32] S. W. Hawking, Breakdown of predictability in gravitational collapse , Physical Review D 14(10), 2460 (1976).

[33] W. G. Unruh e R. M. Wald, Evolution laws taking pure states to mixed states in quantum field theory , Physical Review D 52(4), 2176 (1995).

[34] R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Jonathan Cape, London, 2004).

[35] D. N. Page, Information in black hole radiation, Physical Review Letters 71(23), 3743 (1993).

[36] D. N. Page, Time dependence of Hawking radiation entropy , Journal of Cosmology and Astroparticle Physics 2013(09), 028 (2013).

[37] H. Casini e M. Huerta, Lectures on entanglement in quantum field theory , arXiv preprint (2022). ArXiv:2201.13310 .

[38] R. Bousso et al., Quantum focusing conjecture , Physical Review D 93(6), 064044 (2016).

[39] W. H. Zurek, Entropy evaporated by a black hole , Physical Review Letters 49(25), 1683 (1982).

[40] E. H. Lieb e M. B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, Journal of Mathematical Physics 14(12), 1938 (1973).

[41] A. Almheiri et al., Black holes: complementarity or firewalls? , Journal of High Energy Physics 02, 062 (2013).

[42] S. B. Giddings, Black hole and massive remnants , Physical Review D 46(4), 1347 (1992).

[43] I. B. Barcellos e A. G. S. Landulfo, Relativistic quantum communication: Energycost and channel capacities , Phys. Rev. D 104(10), 105018(2021). ArXiv:2109.13896 .

[44] R. M. Wald, Particle and energy cost of entanglement of Hawking radiation with the final vacuum state , Phys. Rev. D 100, 065019 (2019).

[45] M. Hotta, R. Schützhold e W. G. Unruh, Partner particles for moving mirror radiation and black hole evaporation , Physical Review D 91(12), 124060 (2015).

[46] S. D. Mathur, The fuzzball proposal for black holes: An elementary review , Fortschritte der Physik 53(7-8), 793 (2005).

Downloads

Publicado

29-10-2025

Como Citar

[1]
A. G. S. Landulfo, “O paradoxo da (des)informação em buracos negros”, Cad. Astro., vol. 6, nº 2, p. 72–86, out. 2025, doi: 10.47456/Cad.Astro.v6n2.49480.