Testes de gravitação quântica no laboratório

Autores

DOI:

https://doi.org/10.47456/Cad.Astro.v6n2.49482

Palavras-chave:

gravitação quântica, decoerência, emaranhamento

Resumo

Este trabalho introduz alguns dos principais tópicos relacionados aos recentes esforços para realizar experimentos que comprovem a natureza quântica da gravidade no laboratório. Um panorama geral dos problemas conceituais envolvidos será apresentado, descrevendo as teorias mais conhecidas bem como discutindo algumas abordagens mais relevantes para os experimentos no laboratório como o modelo de decoerência de Diósi-Penrose. Utilizando o formalismo da quantização canônica da gravidade linearizada é demonstrado como previsões estão começando a ser extraídas das teorias conhecidas para um regime ainda pouco explorado experimentalmente. Em seguida, são discutidas algumas das principais propostas experimentais da literatura, em especial a possibilidade de gerar emaranhamento entre duas fontes massivas em estado de superposição quântica e os testes envolvendo sistemas optomecânicos. As conclusões listam problemas em aberto relacionados aos métodos tradicionais de quantização da gravidade no regime de baixas energias e discutindo os caminhos mais promissores experimentalmente para testar previsões que possam comprovar a natureza quântica do campo gravitacional.

Biografia do Autor

  • Francisco Bento Lustosa, Universidade Estadual do Ceará

    F. B. Lustosa é especialista em assuntos relacionados a intersecção dos fenômenos quânticos e gravitacionais, com maior enfoque na Teoria da Onda-Piloto de de Broglie-Bohm. Tem mestrado pela Universidade Federal Fluminense (UFF), doutorado pela Universidade Estadual do Rio de Janeiro (UERJ) e passou um período de 5 anos como bolsista de pós-doutorado no Centro Brasileiro de Pesquisas Físicas (CBPF) onde trabalhou sob a supervisão do professor Nelson Pinto-Neto. Desde janeiro de 2025 é bolsista PDCTR-FUNCAP/CNPq na Faculdade de Educação, Ciências e Letras de Iguatu (FECLI/UECE).

Referências

[1] A. Ashtekar e R. Geroch, Quantum theory of gravitation, Reports on Progress in Physics 37(10), 1211 (1974).

[2] C. Rovelli, Quantum Gravity (Cambridge University Press, 2004).

[3] T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, 2007).

[4] C. Rovelli e F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory (Cambridge University Press, 2014).

[5] P. C. M. Delgado, Introdução à cosmologia quântica, Cadernos de Astronomia 4(2), 98–111 (2023).

[6] P. C. M. Delgado, R. Durrer e N. Pinto-Neto, The CMB bispectrum from bouncing cosmologies, Journal of Cosmology and Astroparticle Physics 2021(11), 024 (2021).

[7] A. Barrau, Astrophysical and cosmological signatures of Loop Quantum Gravity, Scholarpedia 12(10), 33321 (2017).

[8] L. Chataignier, C. Kiefer e P. Moniz, Observations in Quantum Cosmology (2023). ArXiv:2306.14948.

[9] S. Vagnozzi et al., Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A (*), Classical and Quantum Gravity 40(16), 165007 (2023). ArXiv:2205.07787.

[10] M. Maggiore, A generalized uncertainty principle in quantum gravity, Physics Letters B 304(1), 65 (1993).

[11] A. Addazi et al., Quantum gravity phenomenology at the dawn of the multi-messenger era—A review, Progress in Particle and Nuclear Physics 125, 103948 (2022).

[12] J. Oppenheim, Is it time to rethink quantum gravity?, International Journal of Modern Physics D 32(14), 2342024 (2023).

[13] J. Oppenheim e Z. Weller-Davies, The constraints of post-quantum classical gravity, JHEP 02, 080 (2022). ArXiv:2011.15112.

[14] J. Oppenheim et al., Objective trajectories in hybrid classical-quantum dynamics, Quantum 7, 891 (2023).

[15] D. Carney, P. C. E. Stamp e J. M. Taylor, Tabletop experiments for quantum gravity: a user’s manual, Classical and Quantum Gravity 36(3), 034001 (2019).

[16] J. F. Donoghue, Quantum General Relativity and Effective Field Theory (2023). ArXiv:2211.09902.

[17] C. Anastopoulos, M. Lagouvardos e K. Savvidou, Gravitational effects in macroscopic quantum systems: a first-principles analysis, Classical and Quantum Gravity 38(15), 155012 (2021).

[18] L.-Q. Chen, F. Giacomini e C. Rovelli, Quantum States of Fields for Quantum Split Sources, Quantum 7, 958 (2023).

[19] M. Derakhshani, C. Anastopoulos e B. L. Hu, Probing a gravitational cat state: Experimental Possibilities, Journal of Physics: Conference Series 701(1), 012015 (2016).

[20] M. Christodoulou et al., Locally Mediated Entanglement in Linearized Quantum Gravity, Phys. Rev. Lett. 130, 100202 (2023).

[21] S. Bose et al., Massive quantum systems as interfaces of quantum mechanics and gravity, Rev. Mod. Phys. 97, 015003 (2025).

[22] W. M. Campbell et al., Improved constraints on minimum length models with a macroscopic low loss phonon cavity, Phys. Rev. D 108, 102006 (2023).

[23] A. L’Huillier, Nobel Lecture: The route to attosecond pulses, Rev. Mod. Phys. 96, 030503 (2024).

[24] M. Arndt, S. Gerlich e K. Hornberger, Experimental Decoherence in Molecule Interferometry (Springer International Publishing, Cham, 2022), 65–83.

[25] D. Carney et al., Snowmass 2021 White Paper: Tabletop experiments for infrared quantum gravity (2022). ArXiv:2203.11846.

[26] T. Westphal et al., Measurement of gravitational coupling between millimetre-sized masses, Nature 591(7849), 225 (2021).

[27] J. Wilson-Gerow, Y. Chen e P. C. E. Stamp, Testing Quantum Gravity using Pulsed Optomechanical Systems (2023). ArXiv:2311.02033.

[28] R. Kaltenbaek et al., Research campaign: Macroscopic quantum resonators (MAQRO), Quantum Science and Technology 8(1), 014006 (2023).

[29] G. Tobar et al., Detecting single gravitons with quantum sensing, Nature Communications 15(1), 7229 (2024).

[30] S. Bose et al., Spin Entanglement Witness for Quantum Gravity, Phys. Rev. Lett. 119, 240401 (2017).

[31] C. Marletto e V. Vedral, Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity, Phys. Rev. Lett. 119, 240402 (2017).

[32] M. Vicentini et al., Table-top nanodiamond interferometer enabling quantum gravity tests (2024). ArXiv:2405.21029.

[33] G. D. Pietra et al., The Bose-Marletto-Vedral experiment with nanodiamond interferometers: an insight on entanglement detection (2024). ArXiv:2410.19601.

[34] R. Penrose, On Gravity’s role in Quantum State Reduction, General Relativity and Gravitation 28(5), 581 (1996).

[35] P. C. E. Stamp, Rationale for a correlated worldline theory of quantum gravity, New Journal of Physics 17(6), 065017 (2015).

[36] A. Bassi, A. Großardt e H. Ulbricht, Gravitational decoherence, Classical and Quantum Gravity 34(19), 193002 (2017).

[37] C. Anastopoulos e B.-L. Hu, Gravitational decoherence: A thematic overview, AVS Quantum Science 4(1), 015602 (2022).

[38] S. Donadi et al., Underground test of gravity-related wave function collapse, Nature Physics 17(1), 74 (2021).

[39] P. C. E. Stamp, Environmental decoherence versus intrinsic decoherence, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370(1975), 4429 (2012).

[40] L. Diósi, A universal master equation for the gravitational violation of quantum mechanics, Physics Letters A 120(8), 377 (1987).

[41] A. Belenchia et al., Quantum superposition of massive objects and the quantization of gravity, Phys. Rev. D 98, 126009 (2018).

[42] M. Bronstein, Republication of: Quantum theory of weak gravitational fields, General Relativity and Gravitation 44(1), 267 (2012).

[43] D. Carney et al., On the need for soft dressing, Journal of High Energy Physics 2018(9), 121 (2018).

[44] G. W. Semenoff, Entanglement and the Infrared (2019). Disponível em [https://arxiv.org/abs/1912.03187](https://arxiv.org/abs/1912.03187).

[45] K. Prabhu, G. Satishchandran e R. M. Wald, Infrared finite scattering theory in quantum field theory and quantum gravity, Phys. Rev. D 106, 066005 (2022).

[46] R. Penrose, On the Gravitization of Quantum Mechanics 1: Quantum State Reduction, Found. Phys. 44, 557 (2014).

[47] C. Kiefer, Conceptual Problems in Quantum Gravity and Quantum Cosmology, ISRN Mathematical Physics 2013, 509316 (2013).

[48] The role of gravitation in physics: report from the 1957 Chapel Hill Conference (Edition Open Access, 2017).

[49] R. Colella, A. W. Overhauser e S. A. Werner, Observation of Gravitationally Induced Quantum Interference, Phys. Rev. Lett. 34, 1472 (1975).

[50] D. N. Page e C. D. Geilker, Indirect Evidence for Quantum Gravity, Phys. Rev. Lett. 47, 979 (1981).

[51] C. Overstreet et al., Inference of gravitational field superposition from quantum measurements, Phys. Rev. D 108, 084038 (2023).

[52] D. L. Danielson, G. Satishchandran e R. M. Wald, Gravitationally mediated entanglement: Newtonian field versus gravitons, Phys. Rev. D 105, 086001 (2022).

[53] M. Schlosshauer, Quantum decoherence, Physics Reports 831, 1 (2019).

[54] F. Giacomini, E. Castro-Ruiz e Č. Brukner, Quantum mechanics and the covariance of physical laws in quantum reference frames, Nature Communications 10(1), 494 (2019).

[55] M. Bojowald e A. Tsobanjan, Algebraic Properties of Quantum Reference Frames: Does Time Fluctuate?, Quantum Reports 5(1), 22 (2023).

[56] M. J. Lake e M. Miller, Quantum reference frames, revisited (2023). ArXiv:2312.03811.

[57] E. Castro-Ruiz e O. Oreshkov, Relative subsystems and quantum reference frame transformations, Communications Physics 8(1), 187 (2025).

[58] I. L. Shapiro, Polemic notes on IR perturbative quantum gravity, International Journal of Modern Physics A 24(08n09), 1557 (2009).

[59] L.-Q. Chen e F. Giacomini, Quantum effects in gravity beyond the Newton potential from a delocalised quantum source (2024). ArXiv:2402.10288.

[60] B. S. DeWitt, Quantum Theory of Gravity. I. The Canonical Theory, Phys. Rev. 160, 1113 (1967).

[61] K. V. Kuchar, Canonical quantum gravity (1993). ArXiv:gr-qc/9304012.

[62] C. Kiefer e P. Peter, Time in Quantum Cosmology, Universe 8(1), 36 (2022). ArXiv:2112.05788.

[63] B. DeWitt e N. Graham (eds.), The Many-Worlds Interpretation of Quantum Mechanics (Princeton UP, 1973).

[64] M. Leifer, Does the many-worlds interpretation hold the key to spacetime?, Physics Today 72(12), 56 (2019).

[65] D. A. Craig e P. Singh, Consistent probabilities in Wheeler-DeWitt quantum cosmology, Phys. Rev. D 82, 123526 (2010).

[66] J. J. Halliwell, Decoherent histories analysis of minisuperspace quantum cosmology, J. Phys. Conf. Ser. 306, 012023 (2011). ArXiv:1108.5991.

[67] N. Savvidou, Histories approach to general relativity: I. The spacetime character of the canonical description, Classical and Quantum Gravity 21(2), 615 (2003).

[68] N. Pinto-Neto, Bouncing Quantum Cosmology, Universe 7(4), 110 (2021).

[69] F. Shojai e M. Golshani, On the geometrization of Bohmian mechanics: a new approach to quantum gravity, International Journal of Modern Physics A 13(04), 677 (1998).

[70] W. Struyve, Wheeler–DeWitt quantization for point-particles, General Relativity and Gravitation 53(3), 32 (2021).

[71] A. Valentini, Beyond the Born Rule in Quantum Gravity, Foundations of Physics 53(6), 605 (2023).

[72] R. Arnowitt, S. Deser e C. W. Misner, Dynamical Structure and Definition of Energy in General Relativity, Phys. Rev. 116, 1322 (1959).

[73] R. Jha, Introduction to Hamiltonian formulation of general relativity and homogeneous cosmologies, SciPost Phys. Lect. Notes 73 (2023).

[74] A. Mari, G. D. Palma e V. Giovannetti, Experiments testing macroscopic quantum superpositions must be slow, Scientific Reports 6(1), 22777 (2016).

[75] D. Carney, Newton, entanglement, and the graviton, Phys. Rev. D 105, 024029 (2022).

[76] E. Martín-Martínez e T. R. Perche, What gravity mediated entanglement can really tell us about quantum gravity, Phys. Rev. D 108, L101702 (2023).

[77] C. Anastopoulos, B.-L. Hu e K. Savvidou, Quantum field theory based quantum information: Measurements and correlations, Annals of Physics 450, 169239 (2023).

[78] M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments (Oxford University Press, 2007).

Downloads

Publicado

29-10-2025

Como Citar

[1]
F. B. Lustosa, “Testes de gravitação quântica no laboratório”, Cad. Astro., vol. 6, nº 2, p. 42–61, out. 2025, doi: 10.47456/Cad.Astro.v6n2.49482.