Degenerescência quântica e anãs brancas
DOI:
https://doi.org/10.47456/Cad.Astro.v6n2.49837Palavras-chave:
Degenerescência Quântica, Anãs BrancasResumo
Anãs brancas são remanescentes estelares altamente compactas, resultantes do processo evolutivo de estrelas com massas de até dez vezes a massa do nosso Sol. Seu núcleo é formado predominantemente por matéria eletronicamente degenerada. Em uma estrela ordinária, há um balanço entre a atração gravitacional intrínseca e a pressão interna gerada pelo calor e pela radiação nuclear de seu núcleo. Em uma anã branca, o colapso é evitado devido à pressão eletrônica de degenerescência, um efeito quântico que tem origem nas propriedades estatísticas dos férmions, por meio do princípio da exclusão de Pauli. Neste artigo, apresentamos um modelo teórico simples da estrutura de anãs brancas e algumas de suas aplicações em astrofísica.
Referências
[1] W. Pauli, Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , Zeitschrift für Physik 31, 765 (1925).
[2] N. W. Ashcroft e N. D. Mermin, Solid State Physics(Brooks/Cole, 1976).
[3] D. Koester e G. Chanmugam, Physics of white dwarf stars, Reports on Progress in Physics 53, 837 (1990).
[4] D.J.Griffiths, Introduction to Quantum Mechanics(Pearson, 2005), 2 ed.
[5] S. L. Shapiro e S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, 1983).
[6] S. Chandrasekhar, The Maximum Mass of Ideal White Dwarfs, Astrophysical Journal 74, 81 (1931).
[7] J. Iben, I., The evolution of white dwarfs in close binaries, Astrophysical Journal 277, 333 (1984).
[8] R. Kippenhahn e A. Weigert, Stellar Structure and Evolution (Springer, 1990).
[9] B. Paczynski, Evolutionary Processes in Close Binary Systems, Annual Review of Astronomy and Astrophysics 9, 183 (1971).
[10] S. Chandrasekhar, An Introduction to the Study of Stellar Structure (University of Chicago Press, 1939).
[11] J. P. Cox e R. T. Giuli, Principles of Stellar Structure, vol. 1-2 (Gordon and Breach Science Publishers, 1968).
[12] P.-E. Tremblay, P. Bergeron e A. Gianninas, An Improved Spectroscopic Analysis of DA White Dwarfs from the Sloan Digital Sky Survey Data Release 4, Astrophysical Journal 730, 128 (2011).
[13] M. Rotondo et al., Unified approach to the structure of white dwarfs, Physical Review C83, 045805 (2011).
[14] L. A. Carvalho, J. A. Rueda e R. Ruffini, General Relativistic effects in the structure of massive white dwarfs, General Relativity and Gravitation 50, 38 (2018).
[15] P. Haensel, A. Y. Potekhin e D. G. Yakovlev, Neutron Stars 1: Equation of State and Structure (Springer, 2007).
[16] B. W. Carroll e D. A. Ostlie, An Introduction to Modern Astrophysics (Addison-Wesley, 2006), 2 ed.
[17] D. E. WingeteS.O.Kepler, Pulsating White Dwarf Stars and Precision Asteroseismology, Annual Review of Astronomy and Astrophysics 46 (1), 157 (2008).
[18] J. L. Provencal et al., Testing the White Dwarf Mass-Radius Relation with Hipparcos, The Astrophysical Journal 494(2), 759 (1998).
[19] L. G. Althaus et al., Evolutionary and pulsational properties of white dwarf stars, The Astronomy and Astrophysics Review 18(4), 471 (2010).
[20] G. Fontaine e P. Brassard, The Pulsations of White Dwarf Stars, Publications of the Astronomical Society of the Pacific 113, 409 (2001).
[21] L. D. Landau, On the theory of stars , Physikalische Zeitschrift der Sowjetunion 1, 285 (1932).
[22] V. Weidemann, The initial-final mass relation of white dwarfs, Astronomy and Astrophysics 363, 647 (2000).
[23] S. O. Kepler et al., New white dwarf stars in the Sloan Digital Sky Survey Data Release 10, Monthly Notices of the Royal Astronomical Society 446(4), 4078 (2015).
[24] N. K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity(Springer, 2000).
[25] P.-E. Tremblay et al., Fundamental parameter accuracy of DA and DB white dwarfs in Gaia Data Release 2, Monthly Notices of the Royal Astronomical Society 482(4), 5222 (2018).
[26] S. Catalán et al., The initial–final mass relationship of white dwarfs revisited: effect on the luminosity function and mass distribution, Monthly Notices of the Royal Astronomical Society 387, 1693 (2008).
[27] G. Fontaine, P. Brassard e P. Bergeron, The Potential of White Dwarf Asteroseismology, Publications of the Astronomical Society of the Pacific 113, 409 (2001).
[28] A. H. Córsico, L. G. Althaus e M. M. Miller Bertolami, Pulsating white dwarfs: new insights, Astronomy and Astrophysics Review 27, 7 (2019).
[29] L. Mestel, On the theory of white dwarf stars. I. The energy sources of white dwarfs, Monthly Notices of the Royal Astronomical Society 112, 583 (1952).
[30] B.M.S.Hansenetal., The White Dwarf Cooling Sequence of the Globular Cluster Messier 4, The Astrophysical Journal Letters 574(2), L155 (2002). ArXiv:astro-ph/02 05087.
[31] D. Lamb e H. Van Horn, Evolution of crystallizing pure C-12 white dwarfs, Astrophysical Journal 200, 306 (1975).
[32] G. Chabrier e A. Y. Potekhin, Equation of state of fully ionized electron-ion plasmas, Physical Review E 58, 4941 (1998).
[33] L. Segretain et al., Cooling theory of crystallized white dwarfs, Astrophysical Journal 434, 641 (1994).
[34] N. Itoh et al., Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung, and Recombination Neutrino Processes, The Astrophysical Journal Supplement Series 102, 411 (1996).
[35] G. G. Raffelt, Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles (University of Chicago Press, 1996).
[36] B. Zuckerman et al., Metal Lines in DA White Dwarfs, The Astrophysical Journal 596(1), 477 (2003).
[37] M. Jura, A Tidally Disrupted Asteroid around the White Dwarf G29-38, The Astrophysical Journal Letters 584(2), L91 (2003).
[38] B. T. Gänsicke et al., A Gaseous Metal Disk Around a White Dwarf, Science 314(5807), 1908 (2006).
[39] J. Farihi, M. Jura e B. Zuckerman, Infrared signatures of disrupted minor planets at white dwarfs, The Astrophysical Journal 694(2), 805 (2009).
[40] S. Xu e M. Jura, The Drop during Less than 300 Days of a Dusty White Dwarf’s Infrared Luminosity, The Astrophysical Journal 792(2), L39 (2014).
[41] K. Nomoto, F.-K. Thielemann e K. Yokoi, Accreting White Dwarf Models for Type I Supernovae. III. Carbon Deflagration at High Density, Astrophysical Journal 286, 644 (1984).
[42] M. M. Phillips, The absolute magnitudes of Type IA supernovae, The Astrophysical Journal 413, L105 (1993).
[43] M. Hamuy et al., The Absolute Luminosities of the Calan/Tololo Type IA Supernovae, The Astronomical Journal 112, 2391 (1996).
[44] A. G. Riess et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astronomical Journal 116, 1009 (1998).
[45] S. Perlmutter et al., Measurements of Ωand Λfrom 42 High-Redshift Supernovae, Astrophysical Journal 517, 565 (1999).
[46] G. Nelemans et al., Population synthesis for double white dwarfs: I. Close detached systems, Astronomy & Astrophysics 365(3), 491 (2001).
[47] V. Korol et al., Prospects for detection of detached double white dwarf binaries with Gaia, LSST and LISA, Monthly Notices of the Royal Astronomical Society 470(2), 1894 (2017).
[48] T. R. Marsh, Double white dwarfs and LISA, Classical and Quantum Gravity 28, 094019 (2011).
[49] G. Bertone, D. Hooper e J. Silk, Particle Dark Matter: Evidence, Candidates and Constraints, Physics Reports 405, 279 (2005).
[50] J. Isern et al., Axions and the white dwarf luminosity function, Journal of Physics: Conference Series 172(1), 012005 (2009).
[51] W. Ubachs et al., Colloquium: Search for a drifting proton-electron mass ratio from H2, Reviews of Modern Physics 88(2), 021003 (2016).
[52] J. C. Berengut et al., Limits on the Dependence of the Fine-Structure Constant on Gravitational Potential from White Dwarf Spectra, Physical Review Letters 111, 010801 (2013).
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Marco Moriconi, Rodrigo Negreiros

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.



