A física da radiação cósmica de fundo em micro-ondas

Autores/as

DOI:

https://doi.org/10.47456/Cad.Astro.v4n2.41639

Palabras clave:

cosmologia, universo primordial., radiação cósmica de fundo

Resumen

A radiação cósmica de fundo em micro-ondas é um dos principais observáveis da cosmologia desde a sua descoberta. Ela permite a investigação do cosmos desde seus primeiros instantes: do universo primordial, passando pela época de sua formação, e até os dias atuais. Conseguimos extrair de suas propriedades estatísticas traços deixados por todas as épocas do universo. Neste artigo, iremos detalhar como a radiação de fundo foi prevista, detectada, e como sua análise fornece as melhores descrições do universo no passado e no presente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

A. A. Penzias e R. W. Wilson, A Measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J. 142, 419 (1965).

Planck Collaboration, Planck 2018 results - I. Overview and the cosmological legacy of Planck, Astronomy & Astrophysics 641, A1 (2020).

Planck Collaboration, Planck early results. I. The Planck mission, Astronomy & Astrophysics 536, A1 (2011).

Planck Collaboration, Planck 2018 results - VI. Cosmological parameters, Astronomy & Astrophysics 641, A6 (2020).

J. Mather et al., Early results from the Cosmic Background Explorer (COBE), Advances in Space Research 11(2), 181 (1991).

C. L. Bennett et al., The Microwave Anisotropy Probe* Mission, The Astrophysical Journal 583(1), 1 (2003).

Bertout, C. e Forveille, T., Pre-launch status of the Planck mission, Astronomy & Astrophysics 520, E1 (2010).

A. Einstein, Zur Allgemeinen Relativitätstheorie, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1915, 778 (1915), [Addendum: Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1915, 799–801 (1915)].

A. Einstein, The Field Equations of Gravitation, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1915, 844 (1915).

O. F. Piattella, Introdução à relatividade geral, Cadernos de Astronomia 1(1), 30 (2020).

F. W. Dyson, A. S. Eddington e C. Davidson, IX. A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 220(571-581), 291 (1920).

M. Stanley, “An Expedition to Heal the Wounds of War” The 1919 Eclipse and Eddington as Quaker Adventurer, Isis 94(1), 57 (2003).

K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1916, 189 (1916).

A. Einstein, Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 142–152 (1917).

A. Friedman, Über die Krümmung des Raumes, Zeitschrift für Physik 10(1), 377 (1922).

G. Lemaître, Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques, Annales Soc. Sci. Bruxelles 47, 49 (1927).

H. Robertson, LXXXVI. On relativistic cosmology, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 5(31), 835 (1928).

A. G. Walker, On Milne’s Theory of WorldStructure*, Proceedings of the London Mathematical Society s2-42(1), 90 (1937).

H. Velten e W. Zimdahl, O universo dinâmico de Friedmann: Tradução do artigo seminal de Friedmann, Cadernos de Astronomia 3(1), 151 (2022).

B. Ryden, Introduction to cosmology (Cambridge University Press, 1970).

S. Dodelson, Modern Cosmology (Academic Press, Amsterdam, 2003).

J. Gregory, Fred Hoyle’s Universe (Oxford University Press, Oxford, 2005).

G. Gamow, Expanding Universe and the Origin of Elements, Phys. Rev. 70, 572 (1946).

V. S. Alpher, Ralph A. Alpher, Robert C. Herman, and the Cosmic Microwave Background Radiation, Physics in Perspective 14(3), 300 (2012).

R. A. Alpher, H. Bethe e G. Gamow, The Origin of Chemical Elements, Phys. Rev. 73, 803 (1948).

R. A. Alpher e R. Herman, Evolution of the Universe, Nature 162(4124), 774 (1948).

R. A. Alpher e R. C. Herman, On the Relative Abundance of the Elements, Phys. Rev. 74, 1737 (1948).

W. Wien, Über die Energievertheilung im Emissionsspectrum eines schwarzen Körpers, Ann. Phys. (299), 662 (1896).

M. Planck, Über eine Verbesserung der Wienschen Spektralgleichung, Verhandl. Dtsch. phys. Ges. 2(202), 79 (1900).

O. F. Piattella, Max Planck e a quantização da energia, Cadernos de Astronomia 4(1), 175 (2023).

D. R. Faulkner, Comments on the Cosmic Microwave Background, Answers Reasearch Journal 7, 83 (2014). Disponível em https://answersresearchjournal.org/ cosmic-microwave-background/#, acesso em ago. 2023.

R. A. Alpher e R. C. Herman, Theory of the Origin and Relative Abundance Distribution of the Elements, Rev. Mod. Phys. 22, 153 (1950).

G. Gamow, The physics of the expanding universe, Vistas in Astronomy 2, 1726 (1956).

A. Chodos e J. Ouellette, June 1963: Discovery of the cosmic microwave background, APS News 11(7), 2 (2002). Disponível em https://www.aps.org/publications/ apsnews/200207/history.cfm, acesso em ago. 2023.

A. G. Levine, The Large Horn Antenna and the Discovery of Cosmic Microwave Background Radiation, APS Honors (2009). Disponível em https:// www.aps.org/programs/honors/history/ historicsites/penziaswilson.cfm, acesso em ago. 2023.

R. H. Dicke et al., Cosmic Black-Body Radiation., Astrophysical Journal 142, 414 (1965).

D. J. Fixsen et al., The Cosmic Microwave Background Spectrum from the Full COBE* FIRAS Data Set, The Astrophysical Journal 473(2), 576 (1996).

G. Smoot et al., COBE Differential Microwave Radiometers: Instrument Design and Implementation, Astrophysical Journal 360, 685 (1990).

M. G. Hauser et al., The diffuse infrared background: COBE and other observations , in After the first three minutes, editado por S. S. Holt, C. L. Bennett e V. Trimble (1991), vol. 222 de American Institute of Physics Conference Series, 161–178.

J. C. Mather et al., Measurement of the Cosmic Microwave Background Spectrum by the COBE FIRAS Instrument, Astrophysical Journal 420, 439 (1994).

G. Hinshaw et al., Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results, The Astrophysical Journal Supplement Series 208(2), 19 (2013).

C. L. Bennett et al., Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results, The Astrophysical Journal Supplement Series 208(2), 20 (2013).

Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results, Astronomy & Astrophysics 571, A1 (2014).

Planck Collaboration, Planck 2015 results - I. Overview of products and scientific results, Astronomy & Astrophysics 594, A1 (2016).

Mandolesi, N. et al., Planck pre-launch status: The Planck-LFI programme, Astronomy & Astrophysics 520, A3 (2010).

Lamarre, J.-M. et al., Planck pre-launch status: The HFI instrument, from specification to actual performance, Astronomy & Astrophysics 520, A9 (2010).

Tauber, J. A. et al., Planck pre-launch status: The optical system, Astronomy & Astrophysics 520, A2 (2010).

Planck Collaboration, Planck 2018 results - X. Constraints on inflation, Astronomy & Astrophysics 641, A10 (2020).

L. Verde, T. Treu e A. G. Riess, Tensions between the early and late Universe, Nature Astronomy 3(10), 891 (2019).

E. Di Valentino et al., Snowmass2021 - Letter of interest cosmology intertwined II: The hubble constant tension, Astroparticle Physics 131, 102605 (2021).

A. G. Riess et al., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team, The Astrophysical Journal Letters 934(1), L7 (2022).

K. C. Wong et al., H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3 σ tension between early- and late-Universe probes, Monthly Notices of the Royal Astronomical Society 498(1), 1420 (2019).

E. D. Valentino et al., In the realm of the Hubble tension—a review of solutions*, Classical and Quantum Gravity 38(15), 153001 (2021).

N. Schöneberg et al., The H0 Olympics: A fair ranking of proposed models, Physics Reports 984, 1 (2022).

L. A. Anchordoqui et al., Dissecting the H0 and S8 tensions with Planck + BAO + supernova type Ia in multi-parameter cosmologies, Journal of High Energy Astrophysics 32, 28 (2021).

R. Mackenzie et al., Evidence against a supervoid causing the CMB Cold Spot, Monthly Notices of the Royal Astronomical Society 470(2), 2328 (2017).

C. J. Copi et al., Large-Angle Anomalies in the CMB, Advances in Astronomy 2010, 847541 (2010).

M. Quartin e A. Notari, On the significance of power asymmetries in Planck CMB data at all scales, Journal of Cosmology and Astroparticle Physics 2015(01), 008 (2015).

J. Muir, S. Adhikari e D. Huterer, Covariance of CMB anomalies, Phys. Rev. D 98, 023521 (2018).

D. J. Schwarz et al., CMB anomalies after Planck, Classical and Quantum Gravity 33(18), 184001 (2016).

J. Chluba e R. A. Sunyaev, The evolution of CMB spectral distortions in the early Universe, Monthly Notices of the Royal Astronomical Society 419(2), 1294 (2011).

J. Chluba et al., Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics: Astro2020 Science White Paper, Bull. Am. Astron. Soc. 51(3), 184 (2019). ArXiv: 1903.04218.

Colaboração CMB-S4, CMB-S4 Science

Book (2016). ArXiv:1610.02743.

Colaboração CMB-S4, CMB-S4 Science Case, Reference Design, and Project Plan (2019). ArXiv:1907.04473.

T. Matsumura et al., Mission design of LiteBIRD, Journal of Low Temperature Physics 176, 733 (2014).

C. Devereux, Cosmological Clues: Evidence for the Big Bang, Dark Matter and Dark Energy (CRC Press, 2020).

A. Riotto, Inflation and the theory of cosmological perturbations, ICTP Lect. Notes Ser. 14, 317 (2003). ArXiv:hep-ph/0210162.

A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D23, 347 (1981).

D. H. Lyth e A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314, 1 (1999).

A. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Physics Letters B 108(6), 389 (1982).

H. Ramírez, Noncanonical Approaches To Inflation, Tese de Doutorado, IFIC, Universidade de Valência (2019). ArXiv:1906. 09299.

D. Wands, Duality invariance of cosmological perturbation spectra, Phys. Rev. D60, 023507 (1999).

R. H. Brandenberger, Alternatives to the inflationary paradigm of structure formation, Int. J. Mod. Phys. Conf. Ser. 01, 67 (2011).

M. Novello e S. E. P. Bergliaffa, Bouncing Cosmologies, Phys. Rept. 463, 127 (2008).

R. Brandenberger e P. Peter, Bouncing Cosmologies: Progress and Problems, Found. Phys. 47(6), 797 (2017).

J. Lesgourges, Cosmological Perturbations, in Searching for New Physics at Small and Large Scales, editado por M. Schmaltz e E. Pierpaoli (World Scientific, 2013).

W. Hu e M. White, A CMB polarization primer, New Astronomy 2(4), 323 (1997).

D. Baumann, The Physics of Inflation: A Course for Graduate Students in Particle Physics and Cosmology (2011). Disponível em https: //www.icts.res.in/sites/default/ files/baumann_icts_dec2011.pdf, acesso em ago. 2023.

R. Durrer, The Cosmic Microwave Background (Cambridge University Press, Cambridge, 2008).

International Society for Optics and Photonics, The BICEP2 CMB polarization experiment, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, editado por W. S. Holland e J. Zmuidzinas, International Society for Optics and Photonics (SPIE, 2010), vol. 7741, 77411G.

J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview (2011). ArXiv:1104.2932.

W. Hu, Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination (2008). ArXiv:0802.3688.

D. Wands, O. F. Piattella e L. Casarini, Physics of the Cosmic Microwave Background Radiation , in The Cosmic Microwave Background, editado por J. C. Fabris et al. (Springer International Publishing, 2016), 359– 369.

W. Hu, N. Sugiyama e J. Silk, The physics of microwave background anisotropies, Nature 386(6620), 37 (1997).

W. Hu e S. Dodelson, Cosmic Microwave Background Anisotropies, Annual Review of Astronomy and Astrophysics 40(1), 171 (2002).

A. Lewis, A. Challinor e A. Lasenby,

Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models, The Astrophysical Journal 538(2), 473 (2000).

J. Lesgourgues e S. Pastor, Massive neutrinos and cosmology, Physics Reports 429(6), 307 (2006).

C. D. Sheehy et al., The Keck Array: a pulse tube cooled CMB polarimeter, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, editado por W. S. Holland e J. Zmuidzinas (2010).

Colaborações BICEP2/Keck e Planck, Joint Analysis of BICEP2/Keck Array and Planck Data, Phys. Rev. Lett. 114, 101301 (2015).

Colaboração BICEP/Keck, Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season, Phys. Rev. Lett. 127, 151301 (2021).

A. Starobinsky, A new type of isotropic cosmological models without singularity, Physics Letters B 91(1), 99 (1980).

J. Martin et al., The best inflationary models after Planck, Journal of Cosmology and Astroparticle Physics 2014(03), 039 (2014).

Publicado

08-09-2023

Cómo citar

[1]
L. F. de O. Guimarães, «A física da radiação cósmica de fundo em micro-ondas», Cad. Astro., vol. 4, n.º 2, pp. 62–88, sep. 2023.

Número

Sección

Seção Temática