Artificial intelligence for visualizing land cover changes in central China
DOI:
https://doi.org/10.47456/geo.v5i41.50748Keywords:
remote sensing, machine learning, image processingAbstract
Remote sensing (RS) data are essential sources of information for mapping landscape dynamics in urban areas. Algorithms of artificial intelligence (AI), including machine learning (ML), provide robust methods for processing RS data. This study used ML methods of GRASS GIS software for processing satellite images to analyse landscape changes in central China. The aim is to analyse landscape dynamics through detected land cover changes during 10 years with 2-year time gap. The workflow included Random Forest ML algorithm of image classification. Data included six Landsat 8-9 OLI/TIRS images taken in autumn in 2013, 2015, 2017, 2019, 2021 and 2023. The results indicated the expansion of the area of Wuhan city, which indicates the processes of urbanization and intensive land development. This article demonstrated the application of AI-enhanced approach in cartography to image analysis for analysis of landscape dynamics in central China.
Downloads
References
AMANKULOVA, K.; FARMONOV, N.; AKRAMOVA, P.; TURSUNOV; I. ET MUCSI, L. Comparison of PlanetScope, Sentinel-2, and landsat 8 data in soybean yield estimation within-field variability with random forest regression. Heliyon, vol. 9, no 6, p. e17432, 2023. https://doi.org/10.1016/j.heliyon.2023.e17432
BROWN DE COLSTOUN, E. C.; STORY, M. H., THOMPSON, C., COMMISSO, K., SMITH, T. G., IRONS, J. R. National Park vegetation mapping using multitemporal Landsat 7 data and a decision tree classifier. Remote Sensing of Environment, 85, no 3, p. 316-327, 2003. https://doi.org/10.1016/S0034-4257(03)00010-5
CAO, Q.; HUANG, H.; HONG, Y.; HUANG, X.; WANG, S.; WANG, L.; WANG, L. Modeling intra-urban differences in thermal environments and heat stress based on local climate zones in central Wuhan. Building and Environment, 225, no 109625, 2022. https://doi.org/10.1016/j.buildenv.2022.109625
DAI, X.; WANG, L.; LI, X.; GONG, J.; CAO, Q. Characteristics of the extreme precipitation and its impacts on ecosystem services in the Wuhan Urban Agglomeration. Science of The Total Environment, 864, no 161045, 2023. https://doi.org/10.1016/j.scitotenv.2022.161045
DENG, Y.; SHAO, Z.; DANG, C.; HUANG, X.; WU, W.; ZHUANG, Q.; DING, Q. Assessing urban wetlands dynamics in Wuhan and Nanchang, China. Science of The Total Environment, 901, no 165777, 2023. https://doi.org/10.1016/j.scitotenv.2023.165777
DING, W.; CHEN, H. (2022) - Urban-rural fringe identification and spatial form transformation during rapid urbanization: A case study in Wuhan, China. Building and Environment, 226, no 109697. https://doi.org/10.1016/j.buildenv.2022.109697
DOU, Y.; YU, X.; LIU, L.; NING, Y.; BI, X.; LIU, J. Effects of hydrological connectivity project on heavy metals in Wuhan urban lakes on the time scale. Science of The Total Environment, 853, no 158654, 2022. https://doi.org/10.1016/j.scitotenv.2022.158654
FAN, F.; WEN, X.; FENG, Z.; GAO, Y.; LI, W. Optimizing urban ecological space based on the scenario of ecological security patterns: The case of central Wuhan, China. Applied Geography, 138, no 102619, 2022. https://doi.org/10.1016/j.apgeog.2021.102619
FU, C.; JIANG, Z.; GUAN, Z.; HE, J.; XU, Z. Impacts of Climate Change on Water Resources and Agriculture in China”, In: Fu, C., Jiang, Z., Guan, Z., He, J., Xu, Z. (eds) Regional Climate Studies of China. Regional Climate Studies. Springer, Berlin, Heidelberg, 2008. https://doi.org/10.1007/978-3-540-79242-0_11
GENG, L.; ZHAO, X.; AN, Y.; PENG, L.; YE, D. Study on the Spatial Interaction between Urban Economic and Ecological Environment—A Case Study of Wuhan City. International Journal of Environmental Research and Public Health, 19, no 16, p. 10022, 2022. https://doi.org/10.3390/ijerph191610022
GODINHO, S.; GUIOMAR, N.; GIL, A. Using a stochastic gradient boosting algorithm to analyse the effectiveness of Landsat 8 data for montado land cover mapping: Application in southern Portugal. International Journal of Applied Earth Observation and Geoinformation, 49, p. 151-162, 2016. https://doi.org/10.1016/j.jag.2016.02.008
GUAN, D.; HE, X.; HE, C.; CHENG, L.; QU, S. Does the urban sprawl matter in Yangtze River Economic Belt, China? An integrated analysis with urban sprawl index and one scenario analysis model. Cities, 99, no 102611, 2020. https://doi.org/10.1016/j.cities.2020.102611
HE, Q.; TAN, R.; GAO, Y.; ZHANG, M.; XIE, P.; LIU, Y. Modeling urban growth boundary based on the evaluation of the extension potential: A case study of Wuhan city in China. Habitat International, 72, p. 57-65, 2018. https://doi.org/10.1016/j.habitatint.2016.11.006
HU, S.; TONG, L.; FRAZIER, A. E.; LIU, Y. Urban boundary extraction and sprawl analysis using Landsat images: A case study in Wuhan, China. Habitat International, 47, p. 183-195, 2015. https://doi.org/10.1016/j.habitatint.2015.01.017
HU, Y.; LI, L.; LI, B.; PENG, L.; XU, Y.; ZHOU, X.; LI, R.; SONG, K. Spatial variations and ecological risks assessment of pharmaceuticals and personal care products (PPCPs) in typical lakes of Wuhan, China. Process Safety and Environmental Protection, 174, p. 828-837, 2023. https://doi.org/10.1016/j.psep.2023.05.006
HUANG, X.; WANG, H.; XIAO, F. Simulating urban growth affected by national and regional land use policies: Case study from Wuhan, China. Land Use Policy, 112, no 105850, 2022. https://doi.org/10.1016/j.landusepol.2021.105850
JOSHI, P. P.; WYNNE, R. H.; THOMAS, V. A. Cloud detection algorithm using SVM with SWIR2 and tasseled cap applied to Landsat 8. International Journal of Applied Earth Observation and Geoinformation, 82, no 101898, 2019. https://doi.org/10.1016/j.jag.2019.101898
KANA, C. E.; ETOUNA, J. E. Apport de trois méthodes de détection des surfaces brûlées par imagerie Landsat ETM+ : application au contact forêt-savane du Cameroun. Cybergeo: European Journal of Geography, Environnement, Nature, Paysage, no 357, 2006. https://doi.org/10.4000/cybergeo.2711
LAN, H.; ZHENG, P.; LI, Z. Constructing urban sprawl measurement system of the Yangtze River economic belt zone for healthier lives and social changes in sustainable cities. Technological Forecasting and Social Change, 165, no 120569, 2021. https://doi.org/10.1016/j.techfore.2021.120569
LEBAUT, S.; MANCEAU, L. Potentialités des images Landsat pour l'identification et la délimitation de zones humides à l'échelle régionale : l'exemple de l'Est de la France. Physio-Géo, 9, no 1, p. 125-140, 2015. https://doi.org/10.4000/physio-geo.4563
ANONYM
LI, G.; LI, F. Urban sprawl in China: Differences and socioeconomic drivers. Science of The Total Environment, v. 673, p. 367-377, 2019. https://doi.org/10.1016/j.scitotenv.2019.04.080
LIU, D.; CLARKE, K. C.; CHEN, N. Integrating spatial nonstationarity into SLEUTH for urban growth modeling: A case study in the Wuhan metropolitan area. Computers, Environment and Urban Systems, 84, no 101545, 2020. https://doi.org/10.1016/j.compenvurbsys.2020.101545
LIU, D.; CHEN, N.; ZHANG, X.; WANG, C.; DU, W. (2020) - Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin. ISPRS Journal of Photogrammetry and Remote Sensing, 159, p. 337-351. https://doi.org/10.1016/j.isprsjprs.2019.11.021
LONG, D.; DU, J.; XIN, Y. Assessing the nexus between natural resource consumption and urban sprawl: Empirical evidence from 288 cities in China. Resources Policy, 85, no 103915, 2023. https://doi.org/10.1016/j.resourpol.2023.103915
MAHMOUD, M. S. A. Classification of high-resolution satellite images from urban areas based hybrid supporting vector machines and Multi-instance learning. International Telecommunications Conference (ITC-Egypt), Alexandria, Egypt, 2021, p. 1-4, 2021. https://doi.org/10.1109/ITC-Egypt52936.2021.9513882
MOUNTRAKIS, G.; HEYDARI, S. S. Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits. ISPRS Journal of Photogrammetry and Remote Sensing, 200, p. 106-119, 2023. https://doi.org/10.1016/j.isprsjprs.2023.05.005
NAGARAJ, R.; KUMAR, L. S. Surface water body extraction and Change Detection Analysis using Machine Learning Algorithms: A Case study of Vaigai Dam, India. International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT), Karaikal, India, p. 1-6, 2023. https://doi.org/10.1109/IConSCEPT57958.2023.10170342
RAHBAR ALAM SHIRAZI, F.; SHAHBAZI, F.; REZAEI, H.; BISWAS, A. Multi-property digital soil mapping at 30-m spatial resolution down to 1 m using extreme gradient boosting tree model and environmental covariates. Remote Sensing Applications: Society and Environment, 33, no 101123, 2024. https://doi.org/10.1016/j.rsase.2023.101123
SELVARAJU, S.; JANCY, P. L.; VINOD KUMAR, D.; PRABHA, R.; KARTHIKEYAN, C.; BABU D. V. Support Vector Machine based Remote Sensing using Satellite Data Image. 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, p. 871-874, 2021. https://doi.org/10.1109/ICOSEC51865.2021.9591631
SHENDRYK, Y.; ROSSITER-RACHOR, N. A.; SETTERFIELD, S. A.; LEVICK, S. R. Leveraging High-Resolution Satellite Imagery and Gradient Boosting for Invasive Weed Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4443-4450, 2020. https://doi.org/10.1109/JSTARS.2020.3013663
TAN, R.; LIU, Y.; ZHOU, K.; JIAO, L.; TANG, W. A game-theory based agent-cellular model for use in urban growth simulation: A case study of the rapidly urbanizing Wuhan area of central China. Computers, Environment and Urban Systems, 49, p. 15-29, 2015. https://doi.org/10.1016/j.compenvurbsys.2014.09.001
TENG, M.; ZHOU, Z.; WANG, P.; XIAO, W.; WU, C.; LORD E. Geotechnology-Based Modeling to Optimize Conservation of Forest Network in Urban Area. Environmental Management, 57, p. 601–619, 2016. https://doi.org/10.1007/s00267-015-0642-6
TONG, L.; HU, S.; FRAZIER, A. E.Hierarchically measuring urban expansion in fast urbanizing regions using multi-dimensional metrics: A case of Wuhan metropolis, China. Habitat International, v. 94, no 102070, 2019. https://doi.org/10.1016/j.habitatint.2019.102070
WANG, Q.; WANG, H. (2022) - Spatiotemporal dynamics and evolution relationships between land-use/land cover change and landscape pattern in response to rapid urban sprawl process: A case study in Wuhan, China. Ecological Engineering, 182, no 106716. https://doi.org/10.1016/j.ecoleng.2022.106716
WU, D.; ZHENG, L.; WANG, Y.; GONG, J.; LI, J.; CHEN, Q. Characteristics of urban expansion in megacities and its impact on water-related ecosystem services: A comparative study of Chengdu and Wuhan, China. Ecological Indicators, 158, no 111322, 2024. https://doi.org/10.1016/j.ecolind.2023.111322
XING, S.; YANG, S.; SUN, H.; WANG, Y. Spatiotemporal Changes of Terrestrial Carbon Storage in Rapidly Urbanizing Areas and Their Influencing Factors: A Case Study of Wuhan, China. Land 12, no 12, p. 2134, 2023. https://doi.org/10.3390/land12122134
YUAN, Q.; ZHU, J. (2019) - Logistics sprawl in Chinese metropolises: Evidence from Wuhan. Journal of Transport Geography, 74, p. 242-252. https://doi.org/10.1016/j.jtrangeo.2018.11.019
ZHANG L.; ZHANG M.; WANG Q. Monitoring of subpixel impervious surface dynamics using seasonal time series Landsat 8 OLI imagery. Ecological Indicators, 154, no 110772, 2023. https://doi.org/10.1016/j.ecolind.2023.110772
ZHENG, Z.; YANG, B.; LIU, S.; XIA, J.; ZHANG, X. Extraction of impervious surface with Landsat based on machine learning in Chengdu urban, China. Remote Sensing Applications: Society and Environment, 30, no 100974, 2023. https://doi.org/10.1016/j.rsase.2023.100974
ZENG, C.; LIU, Y.; STEIN, A.; JIAO, L. Characterization and spatial modeling of urban sprawl in the Wuhan Metropolitan Area, China. International Journal of Applied Earth Observation and Geoinformation, 34, p. 10-24, 2015. https://doi.org/10.1016/j.jag.2014.06.012
ZHOU, X.; WU, B.; LIU, Y.; ZHOU, Q.; CHENG, W. Synergistic effects of heat and carbon on sustainable urban development: Case study of the Wuhan Urban Agglomeration. Journal of Cleaner Production, 425, no 138971, 2023. https://doi.org/10.1016/j.jclepro.2023.138971
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Geografares

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyrights Declaration
Authors who publish in the journal agree with the following terms:
- Authors will keep their copyrights and grant the journal the right to their first publishing, simultaneously licenced under Creative Commons Attribution License which allows sharing their work with authorship recognition and initial release through this journal.
- Authors may sign additional contracts separately diffusing a non-exclusively version of the paper published in this journal (i.g. publishing in institutional repository or as a book chapter), once citing the authorship and initial release through this journal.
- Authors are encouraged to publicize and diffuse their paper online, for example onto institutional repositories or on their personal websites.

























