Simulação numérica da transferência de calor por convecção natural em uma cavidade quadrada com inserções porosas

Authors

DOI:

https://doi.org/10.21712/lajer.2025.v12.n4.p40-50

Keywords:

convecção natural; porosidade; simulação numérica; cavidade; escoamento laminar.

Abstract

Este trabalho é um estudo preliminar e trata da investigação da convecção natural em cavidades retangulares preenchidas total ou parcialmente com material poroso, sob condições de desequilíbrio térmico local. São apresentadas simulações numéricas para o escoamento laminar em regime permanente, com base em uma formulação macroscópica das equações de transporte. As equações da conservação da massa, quantidade de movimento e energia são escritas para um volume elementar representativo, resultando em um conjunto de equações válidas para todo o domínio computacional. Essas equações são discretizadas utilizando o método dos volumes de controle, e o sistema resultante de equações algébricas é resolvido pelo procedimento semi-implícito de Stone. O acoplamento pressão-velocidade é feito através do algoritmo SIMPLE. Resultados de benchmarks consolidados na literatura são comparados com soluções numéricas de escoamento laminar obtidas neste trabalho. Foram realizados testes de independência de malha para avaliar a influência do refinamento espacial sobre as variáveis de interesse. São apresentados os campos de temperatura e as linhas de corrente correspondentes às fases fluida e sólida, permitindo a visualização detalhada dos padrões de escoamento e da distribuição térmica sob diferentes condições de contorno. Também são apresentados os valores do número de Nusselt médio na parede aquecida, obtidos a partir do modelo macroscópico, para diversos números de Darcy. Por fim, é apresentado um estudo de sensibilidade em relação ao número de Rayleigh e à porosidade.

Downloads

Download data is not yet available.

Author Biographies

  • Felipe Coelho de Andrade Fava, Federal University of Paraná

    Civil Engineer graduated from the Federal University of Technology of Paraná (UTFPR). Master's student in Numerical Methods in Engineering at the Federal University of Paraná (UFPR). Postgraduate in Public Infrastructure Policies from ENAP. Has experience in computational numerical simulations in the field of Energy Engineering, with an emphasis on oil and gas. Infrastructure Analyst at the Ministry of Management and Innovation in Public Services (MGI).

  • Dr.Roberto Carlos Moro Filho, Federal University of Technology - Paraná / Professor.

    Data processing technician, civil engineer, master in mechanical engineering, doctor in aeronautical and mechanical engineering (ITA) with a postdoctoral degree from Loughborough University in England. In the field of biomedical engineering, he worked as a sales engineer at Philips Medical Systems, receiving training in magnetic resonance imaging, linear accelerators, hemodynamics, computed tomography, ultrasound, and X-ray. In the steel industry, he was a marketing manager at Gerdau Group in flat and long steel sectors, and in the chemical industry, he worked at Eastman Chemical Company/Day Brasil S.A. He received training at the Eastman plant in Kingsport-TN in the areas of polyesters, extrusion, and thermoforming. In academia, he specialized in numerical methods applied to fluid mechanics and heat transfer. He was a researcher (DTi Scholarship) at the Institute of Aeronautics and Space (IAE) in the area of space vehicle development. He is currently an associate professor IV in the Academic Department of Civil Construction (DACOC) at UTFPR, teaching in the Civil Engineering and Environmental and Sanitary Engineering courses. He is a collaborator professor in the Graduate Program in Numerical Methods in Engineering at UFPR. He conducts research in the fields of transport phenomena in porous media, thermal radiation, and combustion. He is the technical manager of the fluid mechanics laboratory at the Ecoville campus of UTFPR. He coordinated a project funded by the Brazilian Space Agency in the area of rocket engine cooling. He developed projects in partnership with the Launch Center of Barreira do Inferno and with the Institute of Propulsion at the Technical University of Munich (TUM). In 2015, he coordinated the first Brazil-Germany workshop on astronautics. He received the diploma of Honorary Member of the Brazilian Air Force in 2012 for services rendered.

References

Ampofo, F and Karayiannis, TG (2003) ‘Experimental benchmark data for turbulent natural convection in an air-filled square cavity’, International Journal of Heat and Mass Transfer, v. 46, n. 19, pp. 3551–3572. https://doi.org/10.1016/S0017-9310(03)00147-9

Aquino, FRQ (2001) Convecção natural em cavidades triangulares. Tese (Doutorado em Engenharia Mecânica), Faculdade de Engenharia, Campus de Guaratinguetá, Universidade Estadual Paulista, Guaratinguetá.

Arici, M, Kan, M and Karabay, H (2015) ‘Effect of aspect ratio on natural convection in a cavity with wavy walls’, Acta Physica Polonica A, v. 128, n. 2B. https://doi.org/10.12693/APhysPolA.128.B-197

Barakos, G, Mitsoulis, E and Assimacopoulos, D (1994) ‘Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions’, International Journal for Numerical Methods in Fluids, v. 18, pp. 695–719. https://doi.org/10.1002/fld.1650180705

Batchelor, GK (1954) ‘Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures’, Quarterly of Applied Mathematics, v. 12, pp. 209–233. https://doi.org/10.1090/QAM/64563

Baytas, AC and Pop, I (2002) ‘Free convection in a square porous cavity using a thermal nonequilibrium model’, International Journal of Thermal Sciences, v. 41, n. 9, pp. 861–870. https://doi.org/10.1016/S1290-0729(02)01379-0

Brinkman, HC (1947) ‘A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles’, Applied Scientific Research, pp. 27–34. https://doi.org/10.1007/BF02120313

Corvaro, M and Paroncini, M (2009) ‘An experimental study of natural convection in a differentially heated cavity through a 2D-PIV system’, International Journal of Heat and Mass Transfer, v. 52, n. 1–2, pp. 355–365. https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.039

De Vahl Davis, G (1968) ‘Laminar natural convection in an enclosed rectangular cavity’, International Journal of Heat and Mass Transfer, v. 11, pp. 1675–1693. https://doi.org/10.1016/0017-9310(68)90047-1

De Vahl Davis, G (1983) ‘Natural convection of air in a square cavity: a benchmark numerical solution’, International Journal for Numerical Methods in Fluids, v. 3, pp. 249–264. https://doi.org/10.1002/fld.1650030305

De Vahl Davis, G and Jones, IP (1983) ‘Natural convection of air in a square cavity: a comparison exercise’, International Journal for Numerical Methods in Fluids, v. 3, pp. 227–248. https://doi.org/10.1002/fld.1650030304

Forchheimer, P (1901) ‘Wasserbewegung durch Boden’, Zeitschrift des Vereins Deutscher Ingenieure, v. 45, pp. 1782–1788.

Frederick, RL and Quiroz, F (2001) ‘On the transition from conduction to convection regime in a cubical enclosure with a partially heated wall’, International Journal of Heat and Mass Transfer, v. 44, pp. 1699–1709. Disponível em: https://doi.org/10.1016/S0017-9310(00)00219-2

Fusegi, T, Hyun, JM and Kuwahara, K (1991) ‘Three-dimensional simulations of natural convection in a sidewall-heated cube’, International Journal for Numerical Methods in Fluids, v. 13, pp. 857–867. Disponível em: https://doi.org/10.1002/fld.1650130704

Kaviany, M (1995) Principles of Heat Transfer in Porous Media. New York: Springer.

Krane, RJ and Jessee, J (1983) ‘Some detailed field measurements for a natural convection flow in a vertical square enclosure’ in Proceedings of the 1st Joint Conference ASME-JSME on Thermal Engineering, vol. I, pp. 323–329.

Kuwahara, F, Kameyama, Y, Yamashita, S and Nakayama, A (1998) ‘Numerical modeling of turbulent flow in porous media using a spatially periodic array’, Journal of Porous Media, v. 1, n. 1, pp. 47–55. Disponível em: https://doi.org/10.1615/JPorMedia.v1.i1.40

Lemos, MJS de and Braga, EJ (2003) ‘Modeling of turbulent natural convection in saturated rigid porous media’, International Communications in Heat and Mass Transfer, v. 30, n. 5, pp. 615–624. https://doi.org/10.1016/S0735-1933(03)00099-X

Malico, I, Zhou, XY and Pereira, JCF (2000) ‘Two-dimensional numerical study of combustion and pollutant formation in porous burners’, Combustion Science and Technology, v. 152, n. 1, pp. 57–79. https://doi.org/10.1080/00102200008952127

Markatos, NC and Pericleous, K (1984) ‘Laminar and turbulent natural convection in an enclosed cavity’, International Journal of Heat and Mass Transfer, v. 27, pp. 755–772. https://doi.org/10.1016/0017-9310(84)90145-5

Moro Filho, RC and Andrade, FO de (2022) ‘Numerical simulation of turbulent flow and heat transfer in a partially porous pipe’ in 13ª Escola de Primavera de Transição e Turbulência (EPTT 2022), Blumenau: ABCM. https://doi.org/10.26678/ABCM.EPTT2022.EPT22-0072

Moro Filho, RC and Malalasekera, W (2020) ‘An analysis of thermal radiation in porous media under local thermal non-equilibrium’, Transport in Porous Media, v. 132, pp. 683–705. https://doi.org/10.1007/s11242-020-01408-x

Nithiarasu, P, Seetharamu, KN and Sundararajan, T (1997) ‘Natural convective heat transfer in a fluid-saturated variable porosity medium’, International Journal of Heat and Mass Transfer, v. 40, n. 16, pp. 3955–3967. https://doi.org/10.1016/S0017-9310(97)00008-2

Nithyadevi, N, Kandaswamy, P and Lee, J (2007) ‘Natural convection in a rectangular cavity with partially active side walls’, International Journal of Heat and Mass Transfer, v. 50, n. 23–24, pp. 4688–4697. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.050

Nogueira, R, Martins, M and Ampessan, F (2011) ‘Natural convection in rectangular cavities with different aspect ratios’, Thermal Engineering, v. 10, pp. 44–49. https://doi.org/10.5380/reterm.v10i1-2.61951

Ozisik, MN (1985) Heat Transfer: A Basic Approach. Singapore: McGraw-Hill.

Pallares, J, Cuesta, I, Grau, FX and Giralt, F (1996) ‘Natural convection in a cubical cavity heated from below at low Rayleigh numbers’, International Journal of Heat and Mass Transfer, v. 39, n. 15, pp. 3233–3247. https://doi.org/10.1016/0017-9310(95)00390-8

Patankar, SV (1980) Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing Corporation.

Pedras, MHJ (2000) Análise do escoamento turbulento em meio poroso descontínuo. Tese (Doutorado), Instituto Tecnológico de Aeronáutica, São José dos Campos.

Poots, G (1958) ‘Heat transfer by laminar free convection in enclosed plane gas layers’, Quarterly of Applied Mathematics, v. 11, pp. 257–273. https://doi.org/10.1093/qjmam/11.3.257

Santos de Jesus, ACFI (2021) Solução numérica do modelo de Stokes-Brinkman para escoamentos em meios porosos. Dissertação (Mestrado), Universidade de São Paulo, São Carlos.

Stone, HL (1968) ‘Iterative solution of implicit approximations of multidimensional partial differential equations’, SIAM Journal on Numerical Analysis, v. 5, n. 3, pp. 530–558. https://doi.org/10.1137/0705044

Ward, JC (1964) ‘Turbulent flow in porous media’, Journal of the Hydraulics Division, ASCE, v. 90, n. HY5, pp. 1–12.

Published

12/24/2025

Issue

Section

Engenharias

How to Cite

Coelho de Andrade Fava, F. and Moro Filho, R.C. (2025) “Simulação numérica da transferência de calor por convecção natural em uma cavidade quadrada com inserções porosas”, Latin American Journal of Energy Research, 12(4), pp. 40–50. doi:10.21712/lajer.2025.v12.n4.p40-50.

Similar Articles

1-10 of 79

You may also start an advanced similarity search for this article.