The metaphysical meaning of extension in Newton

Authors

DOI:

https://doi.org/10.47456/sofia.v12i2.42105

Keywords:

extension, space, place, movement

Abstract

To clarify the concept of extension, Newton first formulated, in De gravitatione, a criticism directed at Cartesian metaphysics by identifying the problem of the identity between body and extension that Descartes had previously established in his concept of movement. In this case, the analysis of the Cartesian concept of extension, in the way Newton rethought it, led to a reflection on the complex relationship between Metaphysics and Natural Philosophy when substance is confused with extension, space with place, in an attempt to explain the movement of bodies. To this end, the foundation of the concept of movement will need to be established within the connection between cause and effect based on its natural manifestations and from which Newton will seek to formulate the concept of active principle in Natural Philosophy.

Downloads

Download data is not yet available.

Author Biography

Ruslane Bião, Universidade de Brasília

Professora de Filosofia do Instituto de Ciências Humanas, Comunicação e Artes da Universidade Federal de Alagoas desde 2007; graduada em Filosofia pela Universidade Católica de Brasília (2001); mestra em Filosofia, na área de Teoria do Conhecimento, pela Universidade de Brasília (2004), com pesquisa desenvolvida no estudo de caso do fenômeno do arco-íris, na Física cartesiana, enfatizando o método de análise e síntese em seu modo duplo de demonstrar; doutora em Filosofia, pela Universidade de Brasília (2022), na área de Filosofia da Ciência, com pesquisa elaborada na comparação entre as distintas teorias da luz de Descartes e Newton, a partir do método de análise e síntese que ambos utilizaram em diferentes configurações.

References

BURTT, E.A. Los fundamentos metafísicos de la ciencia moderna. Buenos Aires: Editorial Sudamericana, 1960.

DESCARTES, R. OEuvres. Paris: Vrin, 1996. 11 vol. Publiées par Charles Adam et Paul Tannery.

DISALLE, R. Newton’s philosophical analysis of space and time. In: COHEN, B. I. & SMITH, G.E. The Cambridge Companion to Newton. Cambridge: Cambridge University Press, 2002, p. 33-56.

GABBEY, A. Newton, active powers, and the mechanical philosophy. In: COHEN, B. I. & SMITH, G.E. The Cambridge Companion to Newton. Cambridge: Cambridge University Press, 2002, p. 329-357.

GLEICK, J. Isaac Newton: uma biografia. São Paulo: Companhia das Letras, 2004.

GUICCIARDINI, N. Isaac Newton on mathematical certainty and method. Cambridge, London: MIT, 2009.

NEWTON, I. The correspondence. Volume one, By TURNBULL, H. W. Cambridge: Royal Society at the University Press, 1959.

NEWTON, I. De Gravitatione et aequipondio fluidorum. In: Unpublished scientific papers of Isaac Newton. Chosen, edited and translated by A. R. HALL & M. B. HALL. Cambridge: Cambridge University Press, 1978, p. 89-156.

NEWTON, I. Optics. Chicago: Encyclopaedia Britannica, 1993.

NEWTON, I. Principia: mathematical principles of natural philosophy and his system of the world. By Florian Cajori. Volume One. Berkeley, Los Angeles, London: University of California Press, 1974.

NEWTON, I. Principia: mathematical principles of natural philosophy and his system of the world. By Florian Cajori. Volume Two. Berkeley, Los Angeles, London: University of California Press, 1973.

NEWTON, I. The Principia: mathematical principles of natural philosophy. A new translation by COHEN, I. B. & WHITMAN, A. preceded by a guide to Newton's Principia by I. COHEN, B. USA: University of California Press, 1999.

SHAPIRO, A. Experimental philosophy. In: Early science and medicine. Minessota: Brill, Vol.9, n. 3, p. 185-217, 2004. Disponível em: A "Filosofia Experimental" de Newton no JSTOR . Acesso em 20 out/2020.

STEIN, H. Newton’s metaphysics. In: COHEN, B. I. & SMITH, G.E. The Cambridge Companion to Newton. Cambridge: Cambridge University Press, 2002, p. 256-307.

Published

03-01-2024

How to Cite

Bião, R. (2024). The metaphysical meaning of extension in Newton. Sofia , 12(2), e12242105. https://doi.org/10.47456/sofia.v12i2.42105