O clima antártico e as quatro décadas de pesquisa no Programa Antártico Brasileiro
DOI:
https://doi.org/10.47456/Cad.Astro.v6n1.47733Palavras-chave:
antártica, clima, PROANTARResumo
A Antártica é uma peça-chave na dinâmica climática no planeta. Seu clima frio característico é responsável pela manutenção da temperatura, modulação de fenômenos climáticos globais, sustentação de ecossistemas e da biodiversidade dependente do gelo. Da mesma forma, a região é impactada de maneira expressiva pelas mudanças climáticas globais. Ao longo das últimas décadas, o Programa Antártico Brasileiro vem empregando esforços no estudo da região, com diversos módulos e instalações empregados na captação de dados climáticos, atmosféricos, biológicos, dentre outros. Neste trabalho, é caracterizado o clima antártico, sua importância no contexto global, os impactos das mudanças climáticas na Antártica e os esforços do Programa Antártico Brasileiro no estudo do clima polar.
Downloads
Referências
[1] P. Krause e K. Flood, Weather and Climate Extremes, US Army Corps of Engineers 94 (1997).
[2] J. Turner et al., Extreme Temperatures in the Antarctic, Journal of Climate 34(7), 2653 (2021).
[3] H. Anna et al., Extending the record of Antarctic ice shelf thickness change, from 1992 to 2017, Advances in Space Research 68(2), 724 (2021).
[4] A. Fox, A. Paul e R. Cooper, Measured Properties of the Antarctic Ice Sheet Derived from the SCAR Antarctic Digital Database, Polar Record 30(174), 201 (1994).
[5] I. L. Boyd, Antarctic Marine Mammals, in Encyclopedia of Marine Mammals, editado por W. F. Perrin, B. Würsig e J. Thewissen (Academic Press, London, 2009), 42–46, second edition ed.
[6] P. Fretwell et al., Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The cryosphere 7(1), 186 (2013).
[7] S. Andrew et al., The IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature 558, 219– (2018).
[8] J. Garbe et al., The hysteresis of the Antarctic Ice Sheet, Nature 585, 538 (2020).
[9] T. John et al., The dominant role of extreme precipitation events in Antarctic snowfall variability, Geophysical Research Letters 46(6), 3502 (2019).
[10] J. D. Wille et al., Antarctic Atmospheric River Climatology and Precipitation Impacts, Journal of Geophysical Research: Atmospheres 126(8), e2020JD033788 (2021).
[11] N. Souverijns et al., How does the ice sheet surface mass balance relate to snowfall? Insights from a ground-based precipitation radar in East Antarctica, The Cryosphere 12(6), 1987 (2018).
[12] D. Thompson e S. Susan, Interpretation of recent Southern Hemisphere climate change, Science 296(5569), 895 (2002).
[13] M. L. Maclennan et al., Contribution of Atmospheric Rivers to Antarctic Precipitation, Geophysical Research Letters 49(18), e2022GL100585 (2022).
[14] K. Marlen et al., Vertical structure and surface impact of atmospheric rivers reaching antarctic sea ice and land, Atmospheric Research 315, 107841 (2025).
[15] H. Eicken, The role of sea ice in structuring Antarctic ecosystems, Polar Biology 12(1), 3 (1992).
[16] R. A. Massom et al., Snow on Antarctic sea ice, Reviews of Geophysics 39(3), 413 (2001).
[17] P. A. Mayewski et al., State of the Antarctic and Southern Ocean climate system, Reviews of Geophysics 47(1), RG1003 (2009).
[18] B. Narissa et al., Perspective: increasing blue carbon around Antarctica is an ecosystem service of considerable societal and economic value worth protecting, Global Change Biology 27(1), 5 (2021).
[19] H. Filip et al., Modelling ground thermal regime in bordering (dis) continuous permafrost environments, Environmental research 181, 108901 (2020).
[20] S. Rahmstorf, Ocean circulation and climate during the past 120,000 years, Nature 419(6903), 207 (2002).
[21] T. John et al., Antarctic climate change and the environment: an update, Polar record 50(3), 237 (2014).
[22] F. Hauke et al., The association of Antarctic krill Euphausia superba with the under-ice habitat, PloS one 7(2), e31775 (2012).
[23] M. Gleiber, S. Deborah e D. Hugh, Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula, Marine Ecology Progress Series 471, 23 (2012).
[24] M. R. Schoeberl et al., The structure of the polar vortex, Journal of Geophysical Research: Atmospheres 97(D8), 7859 (1992).
[25] P. Andrea et al., Impact of Antarctic polar vortex occurrences on total ozone and UVB radiation at southern Argentinean and Antarctic stations during 1997–2003 period, Journal of Geophysical Research: Atmospheres 110(D3) (2005).
[26] L. Eun-Pa et al., Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex, Nature Geoscience 12(11), 896 (2019).
[27] L. R. Pertierra et al., Ecosystem services in Antarctica: Global assessment of the current state, future challenges and managing opportunities, Land use policy 49, 101299 (2021).
[28] S. González-Herrero et al., Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula, Communications Earth & Environment 3(1), 122 (2022).
[29] D. Barriopedro et al., Heat waves: Physical understanding and scientific challenges, Reviews of Geophysics 61(2), e2022RG000780 (2023).
[30] E. The Blanchard-Wrigglesworth Largest Ever et Recorded al., Heatwave—Characteristics and Attribution of the Antarctic Heatwave of March 2022, Geophysical Research Letters 50(178), e2023GL104910 (2023).
[31] J. D. Wille et al., The Extraordinary March 2022 East Antarctica “Heat” Wave. Part I: Observations and Meteorological Drivers, Journal of Climate 37(3), 757 (2024).
[32] M. Seo et al., Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica, Remote Sensing 8(12) (2016).
[33] N. Magalhães et al., Seasonal changes in black carbon footprint on the Antarctic Peninsula due to rising shipborne tourism and forest fires, Science Advances 10(42), eadp1682 (2024).
[34] S. Zhou et al., Slowdown of Antarctic Bottom Water export driven by climatic wind and sea-ice changes, Nature Climate Change 13(7), 701 (2023).
[35] Q. Li et al., Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater, Nature 615(7954), 841 (2023).
[36] M. Kolbe et al., Impact of Thermohaline Variability on Sea Level Changes in the Southern Ocean, Journal of Geophysical Research: Oceans 126(9), e2021JC017381 (2021).
[37] H. Brix e R. Gerdes, North Atlantic Deep Water and Antarctic Bottom Water: Their interaction and influence on the variability of the global ocean circulation, Journal of Geophysical Research: Oceans 108(C2) (2003).
[38] A. J. Greg O’Hare e R. Pope, Current Shifts in Abrupt Climate Change: The Stability of the North Atlantic Conveyor and its Influence on Future Climate, Geography 90(3), 250 (2005).
[39] G. O’Hare, Updating our understanding of climate change in the North Atlantic: the role of global warming and the Gulf Stream, Geography 96(1), 5 (2011).
[40] J. Forcada e P. N. Trathan, Penguin responses to climate change in the Southern Ocean, Global Change Biology 15(7), 1618 (2009).
[41] M. A. Cimino et al., Projected asymmetric response of Adélie penguins to Antarctic climate change, Environmental Research Letters 6(1), 28785 (2016).
[42] C. Barbraud e H. Weimerskirch, Emperor penguins and climate change, Nature 411(6834), 183 (2001).
[43] D. A. Pearce, Climate Change and the Microbiology of the Antarctic Peninsula Region, Science Progress 91(2), 203 (2008).
[44] B. Abirami et al., Impacts of global warming on marine microbial communities, Science of The Total Environment 791, 147905 (2021).
[45] A. Santos et al., Measuring the effect of climate change in Antarctic microbial communities: toward novel experimental approaches, Current Opinion in Biotechnology 81, 102918 (2023).
[46] A. Ferreira et al., Climate change is associated with higher phytoplankton biomass and longer blooms in the West Antarctic Peninsula, Nature Communications 15(1), 6536 (2024).
[47] M. Cataldo et al., Aerobiology in High Latitudes: Evidence of Bacteria Acting as Tracer of Warm Air Mass Advection reaching Northern Antarctic Peninsula, Anais da Academia Brasileira de Ciencias 95(suppl 3), 388 (2023).
[48] T. P. Roland et al., Sustained greening of the Antarctic Peninsula observed from satellites, Nature Geoscience 17(11), 1121 (2024).
[49] N. Cannone et al., Acceleration of climate warming and plant dynamics in Antarctica, Current Biology 32(7), 1599 (2022).
[50] E. Caminha, Antártica- Terra de ninguém, futuro de todos, in Estação Comandante Ferraz: A casa do Brasil na Antártica, editado por M. Mossmann (Lisbela Editora, Brasília, 2020), 15.
[51] H. Evangelista et al., Ideas and perspectives: Southwestern tropical Atlantic coral growth response to atmospheric circulation changes induced by ozone depletion in Antarctica, Biogeosciences 13(8), 2379 (2016).
[52] M. M.Mata, V.M.TavanoeC.A.E.Garcia, 15 years sailing with the Brazilian High Latitude Oceanography Group (GOAL), Deep Sea Research Part II: Topical Studies in Oceanography 149(9), 1 (2018).
[53] J. E. B. Souza, Brasil na Antártica 25 Anos de História (Vento Verde, 2008).
[54] A. R. Viana et al., Antarctic Science for Brazil: An action plan fot the 2013-2022 period (2023).
[55] P. E. Câmara et al., Brazil in Antarctica: 40 years of science, Antarctic Science 33(1), 30 (2021).
[56] H. Evangelista et al., The Hunga Tonga–Hunga Ha’apai volcanic barometric pressure pulse and meteotsunami travel recorded in several Antarctic stations, Anais da Academia Brasileira de Ciencias 96(suppl 2), e20240556 (2024).
[57] A. Bendia et al., Patterns of air mass incursions from Southern Ocean play a role on microbial dispersions into West Antarctic Ice Sheet, research Square.
[58] J. Turner et al., Antarctic Climate Change and the Environment (SCAR & Scott Polar Research Institute, Cambridge, 2009).
[59] S. J. Gonçalves et al., Photochemical reactions on aerosols at West Antarctica: A molecular case-study of nitrate formation among sea salt aerosols, Science of The Total Environment 758, 143586 (2021).
[60] D. Vaughan et al., Recent rapid regional climate warming on the Antarctic Peninsula, Climatic change 60, 243 (2003).
[61] G. Krinner et al., Studies of the Antarctic climate with a stretched-grid general circulation model, Journal of Geophysical Research: Atmospheres 102(D12), 13731 (1997).
[62] S. Coburn, Eyeing 2048: Antarctic Treaty System’s Mining Ban, Columbia Journal of Environmental Law 42(2), 1 (2017).
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Dafne Anjos, Cesar Amaral, Anna Donato, Rodrigo Goldenberg-Barbosa, Letícia Eller

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.