The Antarctic Climate and the Four Decades of Research in the Brazilian Antarctic Program

Authors

  • Cesar Amaral Universidade do Estado do Rio de Janeiro https://orcid.org/0000-0002-4314-3517
  • Dafne Anjos PPGEE/UERJ
  • Anna Donato PPGEE/UERJ
  • Rodrigo Goldenberg-Barbosa PPGEE/UERJ
  • Letícia Eller UERJ

DOI:

https://doi.org/10.47456/Cad.Astro.v6n1.47733

Keywords:

climate, PROANTAR, antarctica

Abstract

Antarctica plays a key role in the planet’s climate dynamics. Its characteristic cold climate is responsible for maintaining temperatures, global climate modulation, sustaining ecosystems and ice-dependent biodiversity. Likewise, the region is significantly impacted by global climate change. Over the past few decades, the Brazilian Antarctic Program has been making efforts to study the region, with several modules and facilities used to collect climatic, atmospheric, and biological data, among others. This paper characterizes the Antarctic climate, its importance in the global context, the impacts of climate change on Antarctica, and the efforts of the Brazilian Antarctic Program to study the polar climate.

Author Biographies

  • Cesar Amaral, Universidade do Estado do Rio de Janeiro

    Cesar Amaral (cesarrlamaral@gmail.com) é especialista em Biologia Molecular Ambiental, atuando na pesquisa de bioaerossois antárticos, mudanças climáticas e Astrobiologia. Desde janeiro de 2020 é Professor do Departamento de Biofísica e Biometria da Universidade do Estado do Rio de Janeiro (UERJ) e credenciado como orientador no Programa de Pós-Graduação em Ecologia e Evolução (PPGEE) da UERJ, atuando como Pesquisador e Vice-Coordenador do Projeto Rios Atmosféricos da Antártica (Projeto RITMOS) junto aos coautores no desenvolvimento de pesquisas junto ao Programa Antártico Brasileiro (PROANTAR).

  • Dafne Anjos, PPGEE/UERJ

    Dafne Anjos (dafne.adr@gmail.com) é doutoranda no PPGEE/UERJ, e tem experiência em Biologia Molecular nos temas aerobiologia, taxonomia e filogenia de organismos antárticos e sub antárticos.

  • Anna Donato, PPGEE/UERJ

    Anna Donato (aldsdonato@gmail.com) é doutoranda no PPGEE/UERJ, e tem experiência em Biologia Molecular com ênfase em DNA
    ambiental, Genética de Populações e Diversidade Genética de mamíferos marinhos.

  • Rodrigo Goldenberg-Barbosa, PPGEE/UERJ

    Rodrigo Goldenberg-Barbosa (rodbarbosa997@gmail.com) é doutorando no PPGEE/UERJ, e tem experiência em Biologia Molecular, DNA ambiental, Mudanças Climáticas e ciências Antárticas.

  • Letícia Eller, UERJ

    Letícia Eller (l.bio.eller@gmail.com) é bióloga pela UERJ, e tem experiência em Biologia Molecular com ênfase em meio ambiente.

References

[1] P. Krause e K. Flood, Weather and Climate Extremes, US Army Corps of Engineers 94 (1997).

[2] J. Turner et al., Extreme Temperatures in the Antarctic, Journal of Climate 34(7), 2653 (2021).

[3] H. Anna et al., Extending the record of Antarctic ice shelf thickness change, from 1992 to 2017, Advances in Space Research 68(2), 724 (2021).

[4] A. Fox, A. Paul e R. Cooper, Measured Properties of the Antarctic Ice Sheet Derived from the SCAR Antarctic Digital Database, Polar Record 30(174), 201 (1994).

[5] I. L. Boyd, Antarctic Marine Mammals, in Encyclopedia of Marine Mammals, editado por W. F. Perrin, B. Würsig e J. Thewissen (Academic Press, London, 2009), 42–46, second edition ed.

[6] P. Fretwell et al., Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The cryosphere 7(1), 186 (2013).

[7] S. Andrew et al., The IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature 558, 219– (2018).

[8] J. Garbe et al., The hysteresis of the Antarctic Ice Sheet, Nature 585, 538 (2020).

[9] T. John et al., The dominant role of extreme precipitation events in Antarctic snowfall variability, Geophysical Research Letters 46(6), 3502 (2019).

[10] J. D. Wille et al., Antarctic Atmospheric River Climatology and Precipitation Impacts, Journal of Geophysical Research: Atmospheres 126(8), e2020JD033788 (2021).

[11] N. Souverijns et al., How does the ice sheet surface mass balance relate to snowfall? Insights from a ground-based precipitation radar in East Antarctica, The Cryosphere 12(6), 1987 (2018).

[12] D. Thompson e S. Susan, Interpretation of recent Southern Hemisphere climate change, Science 296(5569), 895 (2002).

[13] M. L. Maclennan et al., Contribution of Atmospheric Rivers to Antarctic Precipitation, Geophysical Research Letters 49(18), e2022GL100585 (2022).

[14] K. Marlen et al., Vertical structure and surface impact of atmospheric rivers reaching antarctic sea ice and land, Atmospheric Research 315, 107841 (2025).

[15] H. Eicken, The role of sea ice in structuring Antarctic ecosystems, Polar Biology 12(1), 3 (1992).

[16] R. A. Massom et al., Snow on Antarctic sea ice, Reviews of Geophysics 39(3), 413 (2001).

[17] P. A. Mayewski et al., State of the Antarctic and Southern Ocean climate system, Reviews of Geophysics 47(1), RG1003 (2009).

[18] B. Narissa et al., Perspective: increasing blue carbon around Antarctica is an ecosystem service of considerable societal and economic value worth protecting, Global Change Biology 27(1), 5 (2021).

[19] H. Filip et al., Modelling ground thermal regime in bordering (dis) continuous permafrost environments, Environmental research 181, 108901 (2020).

[20] S. Rahmstorf, Ocean circulation and climate during the past 120,000 years, Nature 419(6903), 207 (2002).

[21] T. John et al., Antarctic climate change and the environment: an update, Polar record 50(3), 237 (2014).

[22] F. Hauke et al., The association of Antarctic krill Euphausia superba with the under-ice habitat, PloS one 7(2), e31775 (2012).

[23] M. Gleiber, S. Deborah e D. Hugh, Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula, Marine Ecology Progress Series 471, 23 (2012).

[24] M. R. Schoeberl et al., The structure of the polar vortex, Journal of Geophysical Research: Atmospheres 97(D8), 7859 (1992).

[25] P. Andrea et al., Impact of Antarctic polar vortex occurrences on total ozone and UVB radiation at southern Argentinean and Antarctic stations during 1997–2003 period, Journal of Geophysical Research: Atmospheres 110(D3) (2005).

[26] L. Eun-Pa et al., Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex, Nature Geoscience 12(11), 896 (2019).

[27] L. R. Pertierra et al., Ecosystem services in Antarctica: Global assessment of the current state, future challenges and managing opportunities, Land use policy 49, 101299 (2021).

[28] S. González-Herrero et al., Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula, Communications Earth & Environment 3(1), 122 (2022).

[29] D. Barriopedro et al., Heat waves: Physical understanding and scientific challenges, Reviews of Geophysics 61(2), e2022RG000780 (2023).

[30] E. The Blanchard-Wrigglesworth Largest Ever et Recorded al., Heatwave—Characteristics and Attribution of the Antarctic Heatwave of March 2022, Geophysical Research Letters 50(178), e2023GL104910 (2023).

[31] J. D. Wille et al., The Extraordinary March 2022 East Antarctica “Heat” Wave. Part I: Observations and Meteorological Drivers, Journal of Climate 37(3), 757 (2024).

[32] M. Seo et al., Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica, Remote Sensing 8(12) (2016).

[33] N. Magalhães et al., Seasonal changes in black carbon footprint on the Antarctic Peninsula due to rising shipborne tourism and forest fires, Science Advances 10(42), eadp1682 (2024).

[34] S. Zhou et al., Slowdown of Antarctic Bottom Water export driven by climatic wind and sea-ice changes, Nature Climate Change 13(7), 701 (2023).

[35] Q. Li et al., Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater, Nature 615(7954), 841 (2023).

[36] M. Kolbe et al., Impact of Thermohaline Variability on Sea Level Changes in the Southern Ocean, Journal of Geophysical Research: Oceans 126(9), e2021JC017381 (2021).

[37] H. Brix e R. Gerdes, North Atlantic Deep Water and Antarctic Bottom Water: Their interaction and influence on the variability of the global ocean circulation, Journal of Geophysical Research: Oceans 108(C2) (2003).

[38] A. J. Greg O’Hare e R. Pope, Current Shifts in Abrupt Climate Change: The Stability of the North Atlantic Conveyor and its Influence on Future Climate, Geography 90(3), 250 (2005).

[39] G. O’Hare, Updating our understanding of climate change in the North Atlantic: the role of global warming and the Gulf Stream, Geography 96(1), 5 (2011).

[40] J. Forcada e P. N. Trathan, Penguin responses to climate change in the Southern Ocean, Global Change Biology 15(7), 1618 (2009).

[41] M. A. Cimino et al., Projected asymmetric response of Adélie penguins to Antarctic climate change, Environmental Research Letters 6(1), 28785 (2016).

[42] C. Barbraud e H. Weimerskirch, Emperor penguins and climate change, Nature 411(6834), 183 (2001).

[43] D. A. Pearce, Climate Change and the Microbiology of the Antarctic Peninsula Region, Science Progress 91(2), 203 (2008).

[44] B. Abirami et al., Impacts of global warming on marine microbial communities, Science of The Total Environment 791, 147905 (2021).

[45] A. Santos et al., Measuring the effect of climate change in Antarctic microbial communities: toward novel experimental approaches, Current Opinion in Biotechnology 81, 102918 (2023).

[46] A. Ferreira et al., Climate change is associated with higher phytoplankton biomass and longer blooms in the West Antarctic Peninsula, Nature Communications 15(1), 6536 (2024).

[47] M. Cataldo et al., Aerobiology in High Latitudes: Evidence of Bacteria Acting as Tracer of Warm Air Mass Advection reaching Northern Antarctic Peninsula, Anais da Academia Brasileira de Ciencias 95(suppl 3), 388 (2023).

[48] T. P. Roland et al., Sustained greening of the Antarctic Peninsula observed from satellites, Nature Geoscience 17(11), 1121 (2024).

[49] N. Cannone et al., Acceleration of climate warming and plant dynamics in Antarctica, Current Biology 32(7), 1599 (2022).

[50] E. Caminha, Antártica- Terra de ninguém, futuro de todos, in Estação Comandante Ferraz: A casa do Brasil na Antártica, editado por M. Mossmann (Lisbela Editora, Brasília, 2020), 15.

[51] H. Evangelista et al., Ideas and perspectives: Southwestern tropical Atlantic coral growth response to atmospheric circulation changes induced by ozone depletion in Antarctica, Biogeosciences 13(8), 2379 (2016).

[52] M. M.Mata, V.M.TavanoeC.A.E.Garcia, 15 years sailing with the Brazilian High Latitude Oceanography Group (GOAL), Deep Sea Research Part II: Topical Studies in Oceanography 149(9), 1 (2018).

[53] J. E. B. Souza, Brasil na Antártica 25 Anos de História (Vento Verde, 2008).

[54] A. R. Viana et al., Antarctic Science for Brazil: An action plan fot the 2013-2022 period (2023).

[55] P. E. Câmara et al., Brazil in Antarctica: 40 years of science, Antarctic Science 33(1), 30 (2021).

[56] H. Evangelista et al., The Hunga Tonga–Hunga Ha’apai volcanic barometric pressure pulse and meteotsunami travel recorded in several Antarctic stations, Anais da Academia Brasileira de Ciencias 96(suppl 2), e20240556 (2024).

[57] A. Bendia et al., Patterns of air mass incursions from Southern Ocean play a role on microbial dispersions into West Antarctic Ice Sheet, research Square.

[58] J. Turner et al., Antarctic Climate Change and the Environment (SCAR & Scott Polar Research Institute, Cambridge, 2009).

[59] S. J. Gonçalves et al., Photochemical reactions on aerosols at West Antarctica: A molecular case-study of nitrate formation among sea salt aerosols, Science of The Total Environment 758, 143586 (2021).

[60] D. Vaughan et al., Recent rapid regional climate warming on the Antarctic Peninsula, Climatic change 60, 243 (2003).

[61] G. Krinner et al., Studies of the Antarctic climate with a stretched-grid general circulation model, Journal of Geophysical Research: Atmospheres 102(D12), 13731 (1997).

[62] S. Coburn, Eyeing 2048: Antarctic Treaty System’s Mining Ban, Columbia Journal of Environmental Law 42(2), 1 (2017).

Published

03-04-2025

How to Cite

[1]
C. Amaral, D. Anjos, A. Donato, R. Goldenberg-Barbosa, and L. Eller, “The Antarctic Climate and the Four Decades of Research in the Brazilian Antarctic Program”, Cad. Astro., vol. 6, no. 1, pp. 39–47, Apr. 2025, doi: 10.47456/Cad.Astro.v6n1.47733.