Climate Change and the Challenges Faced by the Amazonia
DOI:
https://doi.org/10.47456/Cad.Astro.v6n1.47433Keywords:
Amazon, climate change, land useAbstract
The Amazon, one of the most biodiverse biomes on the planet, plays a crucial role in global climate regulation and the hydrological cycle of South America. However, climate change and the intensification of human activities, such as deforestation and wildfires, have significantly impacted the region’s ecological stability. This article analyzes the effects of land-use changes on the Amazonian climate, emphasizing the relationship between forest degradation, greenhouse gas emissions, and alterations in precipitation patterns. It also discusses the impacts of atmospheric pollution, including locally and transcontinentally sourced aerosols, which affect the radiative balance and rainfall formation. Given this scenario, the need for strict environmental policies and international cooperation is reinforced to mitigate the effects of climate change and preserve the biome’s resilience. The upcoming COP 2025 in Belém do Pará is highlighted as a strategic opportunity to strengthen global commitments to forest conservation and environmental impact mitigation.
References
[1] C. Hoorn et al., Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity, Science 330(6006), 927 (2010).
[2] F. Wittmann et al., Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees, Ecography 36(6), 690 (2013).
[3] J. M. C. Da Silva, A. B. Rylands e G. A. da Fonseca, The fate of the Amazonian areas of endemism, Conservation Biology 19(3), 689 (2005).
[4] M. Goulding, R. Barthem e E. J. G. Ferreira, The Smithsonian atlas of the Amazon (Smithsonian Institution, 2003).
[5] P. Artaxo et al., Tropical and Boreal Forest– Atmosphere Interactions: A Review, Tellus B: Chemical and Physical Meteorology (2022).
[6] E. Heck, F. Loebens e P. D. Carvalho, Amazônia indígena: conquistas e desafios, Estudos avançados 19, 237 (2005).
[7] N. Peralta, Decolonialidade e Saberes Tradicionais em Práticas Científicas na Amazônia, Revista da UFMG 28(3), 89 (2021).
[8] N. C. P. Pinheiro, Relatos históricos dos séculos XVIII e XIX povos indígenas e plantas nas margens do alto rio Tapajós, Revista do Museu de Arqueologia e Etnologia (42), 186 (2024).
[9] B. Glaser e J. J. Birk, State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio), Geochimica et Cosmochimica acta 82, 39 (2012).
[10] W. I. Woods e W. M. Denevan, Amazonian dark earths: the first century of reports, Amazonian dark earths: Wim Sombroek’s vision 1–14 (2009).
[11] E. G. Neves et al., Historical and sociocultural origins of Amazonian dark earth, Amazonian Dark Earths: Origin Properties Management 29–50 (2003).
[12] C. Steiner et al., Indigenous knowledge about terra preta formation, Amazonian dark earths: Wim Sombroek’s vision 193204 (2009).
[13] P. Artaxo, Working together for Amazonia, Science 363(6425), 323 (2019).
[14] M. L. Pöhlker et al., Long-term observations of cloud condensation nuclei in the Amazon rain forest– Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction, Atmospheric Chemistry and Physics 16(24), 15709 (2016).
[15] M. O.Andreae, Aerosols before pollution, science 315(5808), 50 (2007).
[16] O. Boucher e O. Boucher, Atmospheric aerosols (Springer, 2015).
[17] P. Artaxo et al., Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions, Faraday discussions 165, 203 (2013).
[18] R. d. S. Palácios et al., Long Term Analysis of Optical and Radiative Properties of Aerosols in the Amazon Basin, Aerosol and Air Quality Research 20(1), 139–154 (2020).
[19] M. A. Franco et al., Occurrence and growth of sub-50nm aerosol particles in the Amazonian boundary layer, Atmospheric Chemistry and Physics 22(5), 3469 (2022).
[20] M. Andreae et al., Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons, Atmospheric Chemistry and Physics 12(13), 6041 (2012).
[21] Y. Malhi et al., The regional variation of aboveground live biomass in old-growth Amazonian forests, Global Change Biology 12(7), 1107 (2006).
[22] Y. Malhi, The carbon balance of tropical forest regions, 1990–2005, Current Opinion in Environmental Sustainability 2(4), 237 (2010).
[23] E. Salati et al., Recycling of water in the Amazon basin: an isotopic study, Water resources research 15(5), 1250 (1979).
[24] E. Salati e P. B. Vose, Amazon basin: a system in equilibrium, Science 225(4658), 129 (1984).
[25] A. D. Nobre, O futuro climático da Amazônia, Relatório de Avaliação Científica. São José dos Campos, São Paulo (2014).
[26] C. P. Barber et al., Roads, deforestation, and the mitigating effect of protected areas in the Amazon, Biological conservation 177, 203 (2014).
[27] L. Ferrante e P. M. Fearnside, The Amazon’s road to deforestation, Science 369(6504), 634 (2020).
[28] L. Ferrante, M. B. Andrade e P. M. Fearnside, Land grabbing on Brazil’s Highway BR319 as a spearhead for Amazonian deforestation, Land use policy 108, 105559 (2021).
[29] E. T. Sena, P. Artaxo e A. L. Correia, Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia, Atmospheric Chemistry and Physics 13(3), 1261 (2013).
[30] J. P. Nascimento et al., Aerosols from anthropogenic and biogenic sources and their interactions– modeling aerosol formation, optical properties, and impacts over the central Amazon basin, Atmospheric Chemistry and Physics 21(9), 6755 (2021).
[31] B. A. Holanda et al., Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke, Atmospheric Chemistry and Physics 20(8), 4757 (2020).
[32] L. de Almeida Viana, M. A. de Menezes Franco e L. V. Rizzo, Variabilidade temporal da concentração de metano na média troposfera e associação com variáveis globais e regionais no nordeste da Amazônia, Revista Brasileira de Sensoriamento Remoto 4(3) (2023).
[33] C. M. Souza Jr et al., Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine, Remote Sensing 12(17), 2735 (2020).
[34] F. G. Morais et al., Relationship between land use and spatial variability of atmospheric brown carbon and black carbon aerosols in Amazonia, Atmosphere 13(8), 1328 (2022).
[35] M. Teixeira et al., Analyzing and Forecasting the Morphology of Amazon Deforestation, SSRN 5092417 (2025).
[36] L. F. FG Assis et al., TerraBrasilis: a spatial data analytics infrastructure for largescale thematic mapping, ISPRS International Journal of Geo-Information 8(11), 513 (2019).
[37] R. F. Potenza et al., Análise das emissões de gases de efeito estufa e suas implicações para as metas climáticas do Brasil (1970-2021), Observatório do Clima (2023). Disponível em https://www.oc.eco.br/wp-content/uploads/2023/03/SEEG-10-anos-v4.pdf, acesso em fev. 2025.
[38] Y. Qin et al., Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon, Nature Climate Change 11(5), 442 (2021).
[39] E. L. Bullock e C. E. Woodcock, Carbon loss and removal due to forest disturbance and regeneration in the Amazon, Science of The Total Environment 764, 142839 (2021).
[40] R. J. Brienen et al., Long-term decline of the Amazon carbon sink, Nature 519(7543), 344 (2015).
[41] C. A. Boulton, T. M. Lenton e N. Boers, Pronounced loss of Amazon rainforest resilience since the early 2000s, Nature Climate Change 12(3), 271 (2022).
[42] X. Xu et al., Deforestation triggering irreversible transition in Amazon hydrological cycle, Environmental Research Letters 17(3), 034037 (2022).
[43] X. Xu et al., Climate regime shift and forest loss amplify fire in Amazonian forests, Global Change Biology 26(10), 5874 (2020).
[44] Y. Mu e C. Jones, An observational analysis of precipitation and deforestation age in the Brazilian Legal Amazon, Atmospheric Research 271, 106122 (2022).
[45] Science panel for the Amazon: executive summary, in Amazon Assessment Report 2021, editado por C. Nobre et al. (United Nations Sustainable Development Solutions Network, New York, 2021).
[46] J. A. Marengo et al., Chapter 22: Long-term variability, extremes and changes in temperature and hydro meteorology in the Amazon region, in Amazon Assessment Report 2021, editado por C. Nobre et al. (United Nations Sustainable Development Solutions Network, New York, 2021).
[47] C. A. Nobre e L. D. S. Borma, ‘Tipping points’ for the Amazon forest, Current Opinion in Environmental Sustainability 1(1), 28 (2009).
[48] T. E. Lovejoy e C. Nobre, Amazon tipping point, Science advances 4(2), eaat2340 (2018).
[49] T. E. Lovejoy e C. Nobre, Amazon tipping point: Last chance for action, Science Advances 5(12), eaba2949 (2019).
[50] J. A. Marengo et al., The drought of Amazonia in 2023-2024, American Journal of Climate Change 13(03), 567 (2024).
[51] L. V. Gatti et al., Amazonia as a carbon source linked to deforestation and climate change, Nature 595(7867), 388 (2021).
[52] C. H. Silva-Junior et al., Brazilian Amazon indigenous territories under deforestation pressure, Scientific Reports 13(1), 5851 (2023).
[53] B. N. Holben et al., AERONET—A federated instrument network and data archive for aerosol characterization, Remote sensing of environment 66(1), 1 (1998).
[54] R. Palácios et al., ENSO effects on the relationship between aerosols and evapotranspiration in the south of the Amazon biome, Environmental Research 250, 118516 (2024).
[55] C. Pöhlker et al., Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory, Atmospheric Chemistry and Physics 19(13), 8425 (2019).
[56] B. A. Holanda et al., African biomass burning affects aerosol cycling over the Amazon, Communications Earth & Environment 4, 154 (2023).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Marco Aurélio de Menezes Franco

This work is licensed under a Creative Commons Attribution 4.0 International License.



