Quantum effects in gravitation and gravitational analogues

Authors

DOI:

https://doi.org/10.47456/Cad.Astro.v6n2.49451

Keywords:

quantum field theory in curved spacetimes, general relativity, Hawking radiation, Unruh effect, analogue models of gravity

Abstract

Modern physics reveals that the quantum vacuum, far from being an absolutely empty space, exhibits peculiar properties when analyzed in a curved spacetime, such as in the vicinity of black holes. The interaction between quantum fields and spacetime geometry is formally described by Quantum Field Theory in Curved Spacetimes, which treats gravitational effects as classical manifestations of spacetime curvature, as established by General Relativity. Hawking radiation, for instance, describes how quantum fluctuations near a black hole lead to thermal emission to the exterior, resulting in its gradual evaporation. Another example is the Unruh effect, which predicts that an accelerated observer perceives a thermal bath of radiation in a region where an inertial observer would see only the particle vacuum. However, these phenomena are difficult to detect directly due to the extreme scales involved, which result in thermal emissions of extremely low temperatures. To overcome this limitation, scientists have developed analogue models of gravity. These analogue models are systems (for example, fluid flows and ultracold gases) that reproduce, in the laboratory, conditions equivalent to curved spacetimes. Experiments based on these models allow us to study how spacetime structure influences the quantum behavior of the vacuum, bridging theory and observation and deepening our understanding of the interface between gravity and quantum mechanics.

Author Biographies

  • Lucas Tobias de Paula, Universidade Federal do ABC

    Lucas Tobias de Paula é Bacharel e Mestre em Física pela Universidade Federal de Itajubá (UNIFEI) e atualmente cursa o doutorado em Física na Universidade Federal do ABC (UFABC). Sua pesquisa concentra-se na investigação de fenômenos clássicos e quânticos associados a buracos negros por meio de modelos análogos de gravidade.

  • Murillo Spadin Domingues, Universidade Federal do ABC

    Murillo Spadin Domingues é Bacharel e Mestre em física pela UFABC, onde atualmente cursa doutorado em física. Sua pesquisa tem foco em analogias gravitacionais e modos quasinormais de buracos negros. 

  • Maurício Richartz, Universidade Federal do ABC

    Maurício Richartz é Bacharel em Física e Matemática, e Doutor em Física pela Universidade Estadual de Campinas (UNICAMP). É professor do Centro de Matemática, Computação e Cognição (CMCC) da UFABC. Atua principalmente na área de Gravitação, com ênfase no estudo de buracos negros e seus análogos em fluidos e matéria condensada.

References

[1] K. Jousten, The History of Vacuum Science and Vacuum Technology, in Handbook of Vacuum Technology, editado por K. Jousten (Wiley-VCH Verlag GmbH & Co. KGaA, 2016), 2nd ed.

[2] A. A. Michelson e E. W. Morley, On the relative motion of the Earth and the luminiferous ether, American Journal of Science 34(203), 333 (1887).

[3] H. B. G. Casimir, On the attraction between two perfectly conducting plates, Indagationes Mathematicae 10(4), 261 (1948).

[4] M. J. Sparnaay, Measurements of attractive forces between flat plates, Physica 24(6), 751 (1958).

[5] G. E. A. Matsas, Gravitação semiclassica, Revista Brasileira de Ensino de Fisica 27(1), 137 (2005).

[6] R. M. Wald, The History and Present Status of Quantum Field Theory in Curved Spacetime (2006). ArXiv:gr-qc/0608018.

[7] W. G. Unruh, Notes on Black-Hole Evaporation, Physical Review D 14(4), 870 (1976).

[8] S. W. Hawking, Particle Creation by Black Holes, Communications in Mathematical Physics 43(3), 199 (1975).

[9] C. Barcelo, S. Liberati e M. Visser, Analogue Gravity, Living Reviews in Relativity 8(1) (2005).

[10] W. G. Unruh, Has Hawking Radiation Been Measured?, Foundations of Physics 44(5), 532 (2014).

[11] W. Gordon, Zur Lichtfortpflanzung nach der Relativitatstheorie, Annalen der Physik 377(22), 421 (1923).

[12] W. G. Unruh, Experimental Black-Hole Evaporation?, Physical Review Letters 46, 1351 (1981).

[13] M. Visser, Acoustic black holes: horizons, ergospheres and Hawking radiation, Classical and Quantum Gravity 15(6), 1767 (1998).

[14] T. Torres et al., Quasinormal Mode Oscillations in an Analogue Black Hole Experiment, Phys. Rev. Lett. 125, 011301 (2020).

[15] T. Torres et al., Rotational superradiant scattering in a vortex flow, Nature Physics 13(9), 833 (2017).

[16] M. S. Domingues e M. Richartz, Criando buracos negros em laboratorio, PesquiABC 38 (2025). Disponível em https://www.ufabc.edu.br/divulgacao-cientifica/pesquisabc/edicao-n-38-fevereiro-de-2025/criando-buracos-negros-em-laboratorio, acesso em jul. 2025.

[17] I. Zolnerkevic, Astrofisica na banheira, Revista Pesquisa FAPESP 257, 66 (2017). Disponível em https://revistapesquisa.fapesp.br/astrofisica-na-banheira/, acesso em jul. 2025.

[18] J. Steinhauer, Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nature Physics 12(10), 959-965 (2016).

[19] J. Steinhauer, Confirmation of stimulated Hawking radiation, but not of black hole lasing, Physical Review D 106(10) (2022).

[20] U. Leonhardt, Questioning the Recent Observation of Quantum Hawking Radiation, Annalen der Physik 530(5) (2018).

[21] J. Steinhauer, Comment on "Questioning the Recent Observation of Quantum Hawking Radiation" [Ann. Phys. (Berlin) 2018, 530, 1700114], Annalen der Physik 530(5) (2018).

[22] M. Visser, Essential and inessential features of Hawking radiation, International Journal of Modern Physics D 12(04), 649 (2003).

[23] C. Barcelo, Analogue black-hole horizons, Nature Physics 15(3), 210 (2019).

Published

29-10-2025

How to Cite

[1]
L. T. de Paula, M. . Spadin Domingues, and M. Richartz, “Quantum effects in gravitation and gravitational analogues”, Cad. Astro., vol. 6, no. 2, p. 62–71, Oct. 2025, doi: 10.47456/Cad.Astro.v6n2.49451.