The search for habitable exoplanets

Authors

  • Beatriz Siffert Universidade Federal do Rio de Janeiro

DOI:

https://doi.org/10.47456/Cad.Astro.v3n2.38610

Keywords:

astrobiology, exoplanet, habitable zone, primary transit, radial velocity

Abstract

Since the discovery of the first planets outside the Solar System, the so-called exoplanets, in 1992, more than 5000 exoplanets have been found and there are thousands of other candidates currently under study. Once we discovered the existence of other planetary systems, it becomes natural to ask ourselves if they could also host life. In this context, the multidisciplinary science of astrobiology, which studies the origin and evolution of life in the Universe, gains increasingly visibility. In this paper we present a brief review on the search for exoplanets and the main results so far regarding their astrobiological interest. Starting with the definition of stellar habitable zone, which is the region around a star where it is, in principle, possible to hold liquid water on the surface of a rocky planet, we will then comment on the search for life in the Solar System and describe the main methods currently used to find new exoplanets. We will also present some examples of known exoplanets that are particularly interesting from an astrobiological point of view. We will end by commenting on the search for the so-called biosignatures and technosignatures, which are expected to indicate the existence of life outside Earth, and current and future missions with greatest potential for new discoveries in this field.

Downloads

Download data is not yet available.

References

A. Wolszczan e D. A. Frail, A planetary system around the millisecond pulsar PSR1257 + 12, Nature 355(6356), 145 (1992).

M. Mayor e D. Queloz, A Jupiter-mass companion to a solar-type star, Nature 378(6555), 355 (1995).

R. Di Stefano et al., A possible planet candidate in an external galaxy detected through X-ray transit, Nature Astronomy 5, 1297 (2021).

W. J. Borucki et al., Kepler Planet-Detection Mission: Introduction and First Results, Science 327(5968), 977 (2010).

S. B. Howell et al., The K2 Mission: Characterization and Early Results, Publications of the Astronomical Society of the Pacific 126(938), 398 (2014). ArXiv:1402.5163.

M. Auvergne et al., The CoRoT satellite in light: description and performance, Astronomy & Astrophysics 506(1), 411 (2009). ArXiv:0901.2206.

G. R. Ricker et al., Transiting Exoplanet Survey Satellite (TESS), Journal of Astronomical Telescopes, Instruments, and Systems 1, 014003 (2015).

J. Schneider et al., Dening and cataloging exoplanets: the exoplanet.eu database, Astronomy & Astrophysics 532, A79 (2011). ArXiv:1106.0586.

J. F. Kasting, D. P. Whitmire e R. T. Reynolds, Habitable Zones around Main Sequence Stars, Icarus 101(1), 108 (1993).

R. K. Kopparapu et al., Habitable Zones around Main-sequence Stars: New Estimates, Astrophys. J. 765(2), 131 (2013). ArXiv:1301.6674.

R. K. Kopparapu et al., Habitable Zones around Main-sequence Stars: Dependence on Planetary Mass, Astrophys. J. Letters 787(2), L29 (2014). ArXiv:1404.5292.

I. Mitrofanov et al., The evidence for unusually high hydrogen abundances in the central part of valles marineris on mars, Icarus 374, 114805 (2022).

I. Mitrofanov et al., Fine resolution epithermal neutron detector (frend) onboard the exomars trace gas orbiter, Space Science Reviews 214 (2018).

J. Vago et al., ESA ExoMars program: The next step in exploring Mars, Solar System Research 49, 518 (2015).

R. G. G. Farias, Inuência de características orbitais e atmosféricas na estabilidade da temperatura de exoplanetas, Trabalho de Conclusão de Curso, Bacharelado em Ciências Biológicas: Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro (2019).

D. M. Kipping, Transit timing effects due to an exomoon, Mon. Not. Roy. Astron. Soc. 392(1), 181 (2009). ArXiv:0810.2243.

J. W. Lee et al., The sdB+M Eclipsing System HW Virginis and its Circumbinary Planets, Astronom. J. 137(2), 3181 (2009). ArXiv:0811.3807.

M. Gillon et al., Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1, Nature 542(7642), 456 (2017). ArXiv:1703.01424.

M. Gillon et al., Temperate Earth-sized planets transiting a nearby ultracool dwarf star, Nature 533(7602), 221 (2016). ArXiv:1605.07211.

M. Turbet et al., A Review of Possible Planetary Atmospheres in the TRAPPIST1 System, Space Science Reviews 216(5), 100 (2020). ArXiv:2007.03334.

D. R. Louie et al., Simulated JWST/NIRISS Transit Spectroscopy of Anticipated Tess Planets Compared to Select Discoveries from Space-based and Ground-based Surveys, Publications of the Astronomical Society of the Pacific 130(986), 044401 (2018). ArXiv:1711.02098.

D. Schulze-Makuch et al., A Two-Tiered Approach to Assessing the Habitability of Exoplanets, Astrobiology 11(10), 1041 (2011).

J. S. Greaves et al., Phosphine gas in the cloud decks of Venus, Nature Astronomy 5, 655 (2021). ArXiv:2009.06593.

S. Smith et al., A radio technosignature search towards Proxima Centauri resulting in a signal of interest, Nature Astronomy 5, 1148 (2021). ArXiv:2111.08007.

L. Pasquini et al., CODEX: the highresolution visual spectrograph for the E-ELT, in Ground-based and Airborne Instrumentation for Astronomy II, editado por I. S. McLean e M. M. Casali, International Society for Optics and Photonics (SPIE, 2008), vol. 7014, 573 - 581.

H. Rauer et al., The PLATO 2.0 mission, Experimental Astronomy 38(1-2), 249 (2014). ArXiv:1310.0696.

Published

26-08-2022

How to Cite

[1]
B. Siffert, “The search for habitable exoplanets”, Cad. Astro., vol. 3, no. 2, pp. 4–15, Aug. 2022.

Issue

Section

Seção Temática