Introduction to the geological aspects of the planet Mars: implications for the possibility of human colonization
DOI:
https://doi.org/10.47456/Cad.Astro.v4n1.38690Keywords:
Mars geology, comparative planetology, colonizationAbstract
This article was carried out from the compilation of pre-existing data in national and international literature and aims to analyze and discuss the geological conditions of the planet Mars and its potential for human colonization, bringing information from studies carried out mainly by probes sent to Mars, mapping in general and through in situ analysis of rocks and soils. Based on this, a comparative planetology was carried out between Earth and Mars, mainly in terms of the analysis of the geological structures present on both planets, to determine whether there was or could be water on Mars, an essential resource for the habitation of human beings. Also problematic such as the absence of a magnetic field, which can harm any living being due to the high solar radiation to which it is exposed; and the immense dust storms, which threaten to devastate structures and persist for weeks, make inhabiting Mars risky. It was possible to determine these main factors preventing the colonization of the Red Planet, analyzed as basic information by probes made by the American Space Agency (NASA) and the European Space Agency (ESA) and proposing ideas that may be able to make the colonization of Mars possible, such as creating a greenhouse effect, preventing the increase in dust storms and the placement of an artificial magnetosphere. The latter is shown to be the main solution to the problems addressed. And with the creation of a magnetosphere, it makes it possible for Mars to become more similar to Earth and more comfortable with regard to colonization, with the most advanced technology created by man so far and with further studies about the planet.
Downloads
References
P. M. Branco, Magnetismo terrestre, Serviço Geológico do Brasil - CPRM (2015). Disponível em http://www.cprm.gov.br/publique/SGBDivulga/Canal-Escola/MagnetismoTerrestre-2623.html, acesso em fev. 2023.
D. Kwon, Search for life on the red planet, The Scientist (2017). Disponível em https://www.thescientist.com/features/search-forlife-on-the-red-planet-30176, acesso em fev. 2023.
R. Paoletta, O local mais controverso para o pouso de uma nova missão em marte é também o mais animador, Gizmodo UOL (2017). Disponível em https://gizmodo.uol.com.br/novorover-marte-local-para-pouso/, acesso em fev. 2023.
M. Švanda, Tajemství rudé planety: Povrchové extrémy marsových sopek a kaňonů, Što Plus Jednička. Disponível em https://www.stoplusjednicka.cz/tajemstvi-rude-planety-povrchoveextremy-marsovych-sopek-kanonu, acesso em fev. 2023.
Martian interior: paleomagnetism, European Space Agency (2019). Disponível em https://sci.esa.int/web/marsexpress/-/31028-martian-interior?section=paleomagnetism, acesso em fev. 2023.
N. Neal-Jones e C. O’Carroll, New map provides more evidence mars once like Earth, Goddard Space Flight Center – NASA (2010). Disponível em
https://www.nasa.gov/centers/goddard/news/topstory/2005/mgs_plates.html, acesso em fev. 2023.
J. Lopes, Fim do campo magnético, Super Interessante (2013). Disponível em https://super.abril.com.br/ciencia/fim-do-campo-magnetico/, acesso em fev. 2023.
O plano da nasa para transformar marte em um planeta, BBC News Brasil (2017). Disponível em https://www.bbc.com/portuguese/geral-39164794, acesso em fev. 2023.
P. R. Christensen, The many faces of mars 293(1), 32 (2005).
Pit where a scarp exposes an underground deposit of martian ice, Photojournal JPL NASA (2018). Disponível em https://mars.nasa.gov/resources/21429/pit-where-a-scarp-exposes-anunderground-deposit-of-martian-ice/, acesso em fev. 2023.
J. Parks, Massive, deep deposits of ice found on mars, Astronomy (2018). Disponível em https://astronomy.com/news/2018/01/martian-ice, acesso em fev. 2023.
R. Orosei et al., Radar evidence of subglacial liquid water on mars, Science 361(6401), 490 (2018). ArXiv:arXiv:2004.04587.
E. Veiga, Cientistas encontram água lí- quida em marte, descoberta que pode transformar busca por vida, BBC News Brasil (2018). Disponível em https://www.bbc.com/portuguese/geral-44946892, acesso em fev. 2023.
L. Xiao, Ways to Study Mars, in Mars on Earth, editado por L. Xiao (World Scientific, 2021), 1.
Very high silicon content surprises mars researchers, Niels Bohr Institute (2015). Disponível em https://nbi.ku.dk/english/news/news15/very-high-siliconcontent-surprises-mars-researchers/, acesso em fev. 2023.
Rocks rich in silica present puzzles for mars rover team, Jet Propulsion Laboratory - NASA (2015). Disponível em https://www.jpl.nasa.gov/news/rocksrich-in-silica-present-puzzles-formars-rover-team, acesso em fev. 2023.
Chemcam spectrum from Martian Rock Target ’Ithaca’, NASA Science Mars
Exploration (2013). Disponível em
https://mars.nasa.gov/resources/5763/chemcam-spectrum-from-martian-rocktarget-ithaca/, acesso em fev. 2023.
Map of martian silicon at mid-latitudes, NASA. Disponível em https://www.jpl.nasa.gov/images/pia04256-mapof-martian-silicon-at-mid-latitudes, acesso em fev. 2023.
K. Mersmann, The fact and fiction of martian dust storms, NASA (2017). Disponível em https://www.nasa.gov/feature/goddard/the-fact-and-fiction-ofmartian-dust-storms, acesso em fev. 2023.
NASA Mars Rovers Braving Severe Dust Storms, NASA. Disponível em https://www.jpl.nasa.gov/news/nasa-marsrovers-braving-severe-dust-storms, acesso em fev. 2023.
S. Sacani, Insight estudará os terremotos marcianos, Space Today (2018). Disponível em https://spacetoday.com.br/insightestudara-os-terremotos-marcianosspace-today-tv-ep-1172/, acesso em fev. 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gisllayne Roque Silvestre
This work is licensed under a Creative Commons Attribution 4.0 International License.