AstroBioChemistry in harsh environments: study of polycyclic aromatic hydrocarbons in active galaxies

Authors

DOI:

https://doi.org/10.47456/Cad.Astro.v3n2.38711

Keywords:

extragalactic astronomy, astrobiology, astrochemistry, active galactic nuclei

Abstract

Active galaxies (AGNs) are those in which supermassive black-holes (SMBHs) in their core are capturing matter through an accretion disk. Within the paradigm of AGNs, a point still under debate originates this activity, from what mechanism causes it to how does it affect dust and molecules in galaxies. In order to advance our knowledge in this question, one must conduct studies on the origin and feeding of SMBHs in AGNs through molecular emissions in galaxies, such as OH Megamaser galaxies (OHMGs), Seyfert and Starburst galaxies. This work shows that, in AGNs, organic molecules of polyciclic aromatic hydrocarbons (PAHs) are larger (>180 carbon atoms) than in galaxies with star formation region. This fact implies that PAHs survive the intense radiation and evolve throughout the evolution of the universe, where they grow and incorporate nitrogen. These polyciclic aromatic nitrogen heterocycles (PANHs), which can vary the PAH band emission at 6.2 micrometers, can provide the missing link between the biochemistry of PAHs, seen in the gas and dust of galaxies, and the nucleobases that constitute the coding machinery of life on Earth.

Downloads

Download data is not yet available.

References

P. Ehrenfreund et al., Experimentally Tracing the Key Steps in the Origin of Life: The Aromatic World, Astrobiology 6, 490 (2006).

A. Li, Interaction of Nanoparticles with Radiation, in Astrophysics of Dust, editado por A. N. Witt, G. C. Clayton e B. T. Draine (2004), vol. 309 de Astronomical Society of the Pacific Conference Series, 417. ArXiv: astro-ph/0311066.

A. G. G. M. Tielens, Interstellar Polycyclic Aromatic Hydrocarbon Molecules, Annual Review of Astronomy and Astrophysics 46, 289 (2008).

R. Genzel et al., What Powers Ultraluminous IRAS Galaxies?, Astrophysical Journal 498, 579 (1998). ArXiv:astro-ph/9711255.

D. Lutz et al., The Nature and Evolution of Ultraluminous Infrared Galaxies:A MidInfrared Spectroscopic Survey, Astrophysical Journal Letters 505, L103 (1998). ArXiv: astro-ph/9806270.

D. Rigopoulou et al., A Large Mid-Infrared Spectroscopic and Near-Infrared Imaging Survey of Ultraluminous Infrared Galaxies: Their Nature and Evolution, Astronomical Journal 118, 2625 (1999). ArXiv:astro-ph/9908300.

Q. D. Tran et al., Isocam-Cvf 5-12 Micron Spectroscopy of Ultraluminous Infrared Galaxies, Astrophysical Journal 552, 527 (2001). ArXiv:astro-ph/0101187.

J. D. T. Smith et al., The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission, Astrophysical Journal 656, 770 (2007). ArXiv:astro-ph/0610913.

F. Galliano, PAHs in Galaxies: their Properties and Evolution, astroph (2006). ArXiv: astro-ph/0610852.

F. Galliano et al., Variations of the Mid-IR Aromatic Features inside and among Galaxies, Astrophysical Journal 679, 310 (2008). ArXiv:0801.4955.

K. D. Gordon et al., The Behavior of the Aromatic Features in M101 H II Regions: Evidence for Dust Processing, Astrophysical Journal 682, 336 (2008). ArXiv:0804.3223.

D. A. Sales, M. G. Pastoriza e R. Riffel, Polycyclic Aromatic Hydrocarbon and Emission Line Ratios in Active Galactic Nuclei and Starburst Galaxies, Astrophysical Journal 725, 605 (2010). ArXiv:1010.2170.

D. A. Sales et al., The Compton-thick Seyfert 2 Nucleus of NGC 3281: Torus Constraints from the 9.7 µm Silicate Absorption, Astrophysical Journal 738, 109 (2011). ArXiv: 1106.5731.

D. A. Sales et al., Polycyclic aromatic hydrocarbon in the central region of the Seyfert 2 galaxy NGC 1808, Mon. Not. Roy. Astron. Soc. 429(3), 2634 (2013). ArXiv: 1212.1357.

D. A. Sales et al., An Embedded Active Nucleus in the OH Megamaser Galaxy IRAS16399-0937, Astrophys. J. 799(1), 25 (2015). ArXiv:1411.1261.

O. Laurent et al., Mid-infrared diagnostics to distinguish AGNs from starbursts, Astronomy and Astrophysics 359, 887 (2000). ArXiv:astro-ph/0005376.

D. Ruschel-Dutra et al., A mid-IR comparative analysis of the Seyfert galaxies NGC 7213 and NGC 1386, Mon. Not. Roy. Astron. Soc. 438(4), 3434 (2014). ArXiv:1401.1989.

A. Alonso-Herrero et al., Nuclear 11.3 µm PAH emission in local active galactic nuclei, Mon. Not. Roy. Astron. Soc. 443(3), 2766 (2014). ArXiv:1407.1154.

A. Alonso-Herrero et al., A mid-infrared spectroscopic atlas of local active galactic nuclei on sub-arcsecond resolution using GTC/CanariCam, Mon. Not. Roy. Astron. Soc. 455(1), 563 (2016). ArXiv:1510.02631.

T. Monfredini et al., Destruction and multiple ionization of PAHs by X-rays in circumnuclear regions of AGNs, Mon. Not. Roy. Astron. Soc. 488(1), 451 (2019). ArXiv:1808.07626.

A. Omont, Physics and chemistry of interstellar polycyclic aromatic molecules, Astronomy and Astrophysics 164, 159 (1986).

P. Ehrenfreund et al., Astrophysical and astrochemical insights into the origin of life, Reports on Progress in Physics 65, 1427 (2002).

L. J. Allamandola, D. M. Hudgins e S. A. Sandford, Modeling the Unidentied Infrared Emission with Combinations of Polycyclic Aromatic Hydrocarbons, The Astrophysical Journal 511, L115 (1999).

D. M. Hudgins e L. J. Allamandola, The Spacing of the Interstellar 6.2 and 7.7 Micron Emission Features as an Indicator of Polycyclic Aromatic Hydrocarbon Size, Astrophysical Journal Letters 513, L69 (1999).

A. L. Mattioda, D. M. Hudgins e L. J. Allamandola, Experimental Near-Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons between 0.7 and 2.5 µm, Astrophysical Journal 629, 1188 (2005).

A. Li e B. T. Draine, On Ultrasmall Silicate Grains in the Diuse Interstellar Medium, Astrophysical Journal Letters 550, L213 (2001). ArXiv:astro-ph/0012147.

C. W. Bauschlicher et al., The NASA ames PAH IR spectroscopic database: Computational version 3.00 with updated content and the introduction of multiple scaling factors, The Astrophysical Journal Supplement Series 234(2), 32 (2018).

E. Peeters et al., The rich 6 to 9 µm spectrum of interstellar PAHs., Astronomy & Astrophysics 390, 1089 (2002). ArXiv:astro-ph/0205400.

B. van Diedenhoven et al., The Proles of the 3-12 Micron Polycyclic Aromatic Hydrocarbon Features, Astrophys. J. 611, 928 (2004). ArXiv:astro-ph/0405098.

H. Andrews et al., PAH Emission at the Bright Locations of PDRs: the grandPAH Hypothesis, Astrophys. J. 807(1), 99 (2015).

D. M. Hudgins, C. W. Bauschlicher, Jr. e L. J. Allamandola, Variations in the Peak Position of the 6.2 µm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population, Astrophys. J. 632, 316 (2005).

A. Vats et al., Theoretical study of infrared spectra of interstellar PAH molecules with N, NH, and NH2 incorporation, Publications

of the Astronomical Society of Japan 74(1), 161 (2022). ArXiv:2112.14453.

C. M. Canelo et al., Variations in the 6.2 µm emission prole in starburst-dominated galaxies: a signature of polycyclic aromatic nitrogen heterocycles (PANHs)?, Mon. Not. Roy. Astron. Soc. 475, 3746 (2018). ArXiv:1708.07565.

C. M. Canelo et al., Profile comparison of the 6-9 µm polycyclic aromatic hydrocarbon bands in starburst-dominated galaxies, Mon. Not. Roy. Astron. Soc. 507(4), 6177 (2021). ArXiv:2109.01641.

J. R. Houck et al., The Infrared Spectrograph (IRS) on the Spitzer Space Telescope, Astrophysical Journal Supplement Series 154, 18 (2004). ArXiv:astro-ph/0406167.

J. F. Gallimore et al., Infrared Spectral Energy Distributions of Seyfert Galaxies: Spitzer Space Telescope Observations of the 12 µm Sample of Active Galaxies, Astrophysical Journal Supplement Series 187, 172 (2010). ArXiv:1001.4974.

B. R. Brandl et al., The Mid-Infrared Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy, Astrophysical Journal 653, 1129 (2006). ArXiv:astro-ph/0609024.

A. Hernan-Caballero et al., Mid-infrared spectroscopy of infrared-luminous galaxies at z ∼ 0.5 - 3, MNRAS 395, 1695 (2009).

A. Hernán-Caballero e E. Hatziminaoglou, An atlas of mid-infrared spectra of starforming and active galaxies, MNRAS 414, 500 (2011).

B. T. Draine e A. Li, Infrared Emission from Interstellar Dust. I. Stochastic Heating of Small Grains, Astrophysical Journal 551, 807 (2001). ArXiv:astro-ph/0011318.

H. Kaneda et al., Properties of Polycyclic Aromatic Hydrocarbons in Local Elliptical Galaxies Revealed by the Infrared Spectrograph on Spitzer, Astrophysical Journal 684, 270 (2008). ArXiv:0805.3257.

M. J. O'Dowd et al., Polycyclic Aromatic Hydrocarbons in Galaxies at z 0.1: The Effect of Star Formation and Active Galactic Nuclei, Astrophysical Journal 705, 885 (2009). ArXiv:0909.2279.

L. K. Hunt et al., The Spitzer View of Low-Metallicity Star Formation. III. Fine-Structure Lines, Aromatic Features, and Molecules, Astrophysical Journal 712, 164 (2010). ArXiv:1002.0991.

C. W. Bauschlicher, Jr., E. Peeters e L. J. Allamandola, The Infrared Spectra of Very Large, Compact, Highly Symmetric, Polycyclic Aromatic Hydrocarbons (PAHs), Astrophysical Journal 678, 316 (2008). ArXiv:0802.1071.

C. M. Canelo, O Mundo Aromático - dos PAHs no meio interestelar às condições bióticas, Dissertação de Mestrado, Universidade de São Paulo (USP), Brasil (2016). Disponível em https://www.iag.usp.br/pos/sites/default/files/d_carla_m_canelo_corrigida.pdf, acesso em ago. 2022.

A. Hernán-Caballero e E. Hatziminaoglou, An atlas of mid-infrared spectra of starforming and active galaxies, Mon. Not. Roy. Astron. Soc. 414, 500 (2011). ArXiv:1101.4794.

Published

26-08-2022

How to Cite

[1]
D. A. Sales and C. M. Canelo, “AstroBioChemistry in harsh environments: study of polycyclic aromatic hydrocarbons in active galaxies”, Cad. Astro., vol. 3, no. 2, pp. 66–74, Aug. 2022.

Issue

Section

Seção Temática