On the conceptual evolution about black hole formation

Authors

  • Rafael Aranha Universidade do Estado do Rio de Janeiro

DOI:

https://doi.org/10.47456/Cad.Astro.v4n1.40191

Keywords:

black holes, gravitational collapse, relativistic astrophysics, gravitation

Abstract

The intellectual development around the formation of black holes has a very rich history, as it does not only involve technical issues particular to the theory of general relativity. The full understanding of gravitational collapse both discusses various topics of relativistic astrophysics, as well as evidences the participation of many of the greatest physicists in the history of science. This article aims to address, in an introductory and conceptual way, the main characteristics of the formation of black holes, in a chronological line of initial rejection, followed by their inevitable acceptance.

Downloads

Download data is not yet available.

References

K. Akiyama e et al., First m87 event horizon telescope results. i. the shadow of the supermassive black hole, The Astrophysical Journal Letters 875, 1 (2019).

The laser interferometer gravitational-wave observatory and the first direct observation of gravitational waves, The Royal Swedish Academy of Sciences (2017).

Theoretical foundation for black holes and the supermassive compact object at the galactic centre, The Royal Swedish Academy of Sciences (2020).

Interstelar , Diretor: Christopher Nolan (Paramount Pictures, Estados Unidos, 2014).

Star Trek The Original Series, Criador: Gene Roddenberry (Hollywood, Estados Unidos, 1969).

L. Niven, A Hole in Space (Ballantine Books, Estados Unidos, 1974).

J. Michell, On the means of discovering the distance, magnitude, etc., of the fixed stars, in consequence of the diminution of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations, as would be further necessary for that purpose., Philosofical Transactions of the Royal Society of London 74, 35 (1784). Disponível em http://www.jstor.org/stable/106576, acesso em fev. 2023.

P. S. Laplace, Exposition du Système du Monde, Volume II: Des Mouvements Réels des Corps Célestes (Paris, 1796).

A. Einstein, On the influence of gravity on the propagation of light, Annalen der Physik 35, 898 (1911).

A. Einstein, The field equations for gravitation, Sitzungberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Mathematik, Physik, und Technik 1915, 844 (1915).

K. Schwarzschild, Uber das gravitationsfeld eines massenpunktes nach der einsteinschen theorie, Sitzungberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Mathematik, Physik, und Technik 1916, 424 (1916).

A. Einstein, Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt, Annalen der Physik 322, 132 (1905).

A. S. Eddington, The Internal Constitution of the Stars (Cambridge University Press, Inglaterra, 1926).

S. Chandrasekhar, The maximum mass of ideal white dwarfs, Astrophysical Journal 52, 81 (1931).

A. Einstein, On a stationary system with spherica symmetry consisting of many gravitating masses, Annals of Mathematics 40, 922 (1939).

28. Commission des nebuleuses extragalactiques, Transactions of the International Astronomical Union 8, 397–399 (1954).

W. Baade e F. Zwicky, Remarks on SuperNovae and Cosmic Rays, Physical Review 46(1), 76 (1934).

W. Baade e F. Zwicky, On super-novae, Proceedings of the National Academy of Sciences 20, 254 (1934).

J. Chadwick, The existence of a neutron, Proceedings of the Royal Society of London 136, 692 (1932).

L. D. Landau, Origin of stellar energy, Nature 141, 333 (1938).

L. D. Landau, On the theory of stars, Physicalische Zeitschrift Sowietunion 1, 285 (1932).

J. R. Oppenheimer e R. Serber, On the stability of stellar neutron cores, Physical Review 54(7), 540 (1938).

H. A. Bethe e C. L. Critchfield, The formation of deuterons by proton combination, Physical Review 54, 248 (1938).

J. R. Oppenheimer e G. M. Volkoff, On massive neutron cores, Physical Review 55(4), 374 (1939).

R. C. Tolman, Static solutions of einstein’s field equations, Physical Review 55, 364 (1939).

J. Schaffner-Bielich, Compact Star Physics (Cambridge University Press, Estados Unidos, 2020).

N. Bohr e J. A. Wheeler, The mechanism of nuclear fission, Physical Review 56, 426 (1939).

B. K. Harrison, M. Wakano e J. A. Wheeler, Matter-Energy at High Density: End Point of Thermonuclear Evolution, in Onzième Conseil de Physique Solvay, editado por Editores (Bruxelas, 1958), 124.

B. K. Harrison et al., Gravitation Theory and Gravitational Collapse (University of Chicago Press, Estados Unidos, 1965).

J. S. Vink, A. de Koter e H. J. Lamers, Massloss predictions for o and b stars as a function of metallicity, Astron. Astrophys. 369, 574 (2001).

J. R. Oppenheimer e H. Snyder, On continued gravitational contraction, Physical Review 56, 455 (1939).

C. W. Misner, K. S. Thorne e J. A. Wheeler, Gravitation (W. H. Freeman, Estados Unidos, 1973).

K. S. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy (W. W. Norton, Estados Unidos, 1994).

S. A. Colgate e R. H. White, Dynamic of a supernova explosion, Bulletin of the American Physical Society 8, 306 (1963).

S. A. Colgate e R. H. White, The hydrodynamic behavior of supernova explosions dynamic of a supernova explosion, Astrophysical Journal 143, 626 (1966).

M. M. M. Colgate e R. H. White, Hydrodynamical calculations of general relativistic collapse, Bulletin of the American Physical Society 10, 15 (1965).

M. M. May e R. H. White, Hydrodynamical calculations of general relativistic collapse, Physical Review 141, 1232 (1966).

A. D. Doroshkevich, Y. B. Zel’dovich e I. D. Novikov, Gavitational collapse of nonsymmetric and rotating masses, Soviet Physics - JETP 22, 122 (1966). Disponível em http://jetp.ras.ru/cgi-bin/e/index/e/22/1/p122?a=list, acesso em fev. 2023.

Y. B. Zel’dovich e Y. B. Khariton, On a issue of a chain reaction based on an isotope of uranium, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 9, 1425 (1939).

V. S. Imshennik e D. K. Nadezhin, Gas dynamical model of a type ii supernova outburst, Soviet Astronomy 8, 664 (1965).

M. A. Podurets, The collapse of a star with back pressure taken into account, Soviet Physics 9, 1 (1964).

J. A. Wheeler, Our universe: the known and the unknown, American Scientist 56, 1 (1968).

D. Finkelstein, Past-future asymmetry of the gravitational field of a point particle, Physical Review 110, 965 (1958).

R. Penrose, Gravitational collapse and spacetime singularities, Physical Review Letters 14(3), 57 (1965).

E. Poisson, A Relativist’s Toolkit – The Mathematics of Black Hole Mechanics (Cambridge University Press, Reino Unido, 2004).

T. W. Baumgarte e S. L. Shapiro, Numerical Relativity: Solving Einstein’s Equation on the Computer (Cambridge University Press, Reino Unido, 2010).

E. M. Lifshitz e I. M. Khalatnikov, Investigations on relativistic cosmology, Advances in Physics 12, 185 (1963).

S. W. Hawking, Black hole explosions?, Nature 248, 30 (1974).

Y. B. Zel’dovich, The generation of waves by a rotating body, JETP Letters 14, 180 (1971).

D. N. Page, Particle emission rates from a black hole. ii. massless particles from a rotating hole, Physical Review D 14, 3260 (1976).

Y. B. Zel’dovich e I. D. Novikov, The hypothesis of cores retarded during expansion and the hot cosmological model, Soviet Ast 10, 602 (1967).

S. W. Hawking, Gravitationally collapse objects of very low mass, MNRAS 152, 75 (1971).

K. S. Thorne, Nonspherical Gravitational Collapse - A Short Review (W H Freeman, Estados Unidos, 1972).

V. Mukhanov, Physical Principles of Cosmology (Cabridge University Press, Reino Unido, 2005).

X. Calmet, B. Carr e E. Winstanley, Quantum Black Holes (Springer, Alemanha, 2014).

B. P. Abbott e et al., Observation of gravitational waves from a binary black hole merger, Physical Review Letters 116, 061102 (2016).

Detection papers, LIGO Caltech. Disponível em https://www.ligo.caltech.edu/page/detection-companionpapers, acesso em fev. 2023.

M. Mapelli, Binary black hole mergers: Formation and populations, Front. Astron. Space Sci. 7, 38 (2020).

M. W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field, Physical Review Letters 70, 9 (1993).

Published

10-03-2023

How to Cite

[1]
R. Aranha, “On the conceptual evolution about black hole formation ”, Cad. Astro., vol. 4, no. 1, pp. 35–48, Mar. 2023.

Issue

Section

Seção Temática