Baryogenesis
DOI:
https://doi.org/10.47456/Cad.Astro.v4n2.41796Keywords:
baryogenesis, matter and antimatter asymetry, primordial universeAbstract
The standard model of particle physics describes matter and antimatter as coming from the same fields and this fact has been confirmed experimentally. It is then curious that the observable universe is made of matter and not antimatter. We will first discuss the evidence that we live in a matter-dominated (or matter-antimatter asymmetric) Universe and then proceed to discuss if this can be explained according to our current understanding of the cosmology and particle physics. We will argue that an important process known as baryogenesis to generate a cosmic matter-antimatter asymmetry had to occur before the Universe was a few second old. Then, we will discuss the necessary ingredients for a successful baryogenesis and point out that the current model contains all the ingredients but not in a sufficient amount. Finally, we will discuss possible extensions to the current model which allow successful baryogenesis and how they can be tested experimentally. Interestingly, they might also be connected to other open puzzles in the fundamental physics, like the tiny neutrino mass.
Downloads
References
P. A. M. Dirac, The quantum theory of the electron, Proc. Roy. Soc. Lond. A 117, 610 (1928).
P. A. M. Dirac, Quantised singularities in the electromagnetic field,, Proc. Roy. Soc. Lond. A 133(821), 60 (1931).
C. D. Anderson, The positive electron, Phys. Rev. 43, 491 (1933).
M. E. Peskin e D. V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995).
A. G. Cohen, A. De Rujula e S. L. Glashow, A matter antimatter universe?, Astrophys. J. 495, 539 (1998). ArXiv:astro-ph/ 9707087.
G. Lemaitre, A homogeneous universe of constant mass and growing radius accounting for the radial velocity of extragalactic nebulae, Annales Soc. Sci. Bruxelles A 47, 49 (1927).
E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, Proc. Nat. Acad. Sci. 15, 168 (1929).
A. A. Penzias e R. W. Wilson, A measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J. 142, 419 (1965).
A. D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967).
A. Einstein, On the electrodynamics of moving bodies, Annalen Phys. 17, 891 (1905).
A. Einstein, The foundation of the general theory of relativity., Annalen Phys. 49(7), 769 (1916).
J. C. Maxwell, A dynamical theory of the electromagnetic field, Phil. Trans. Roy. Soc. Lond. 155, 459 (1865).
L. V. P. R. de Broglie, Recherches sur la théorie des quanta, Annals Phys. 2, 22 (1925).
ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012). ArXiv: 1207.7214.
CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012). ArXiv:1207.7235.
T. D. Lee e C.-N. Yang, Question of parity conservation in weak interactions, Phys. Rev. 104, 254 (1956).
C. S. Wu et al., Experimental test of parity conservation in β decay, Phys. Rev. 105, 1413 (1957).
Super-Kamiokande Collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81, 1562 (1998). ArXiv: hep-ex/9807003.
SNO Collaboration, Measurement of the rate of νe + d → p + p + e− interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87, 071301 (2001). ArXiv:nucl-ex/0106015.
SNO Collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89, 011301 (2002). ArXiv:nucl-ex/0204008.
M. C. Gonzalez-Garcia e M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460, 1 (2008). ArXiv:0704.1800.
F. Englert e R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13, 321 (1964).
P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13, 508 (1964).
N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10, 531 (1963).
M. Kobayashi e T. Maskawa, CP-violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49, 652 (1973).
J. H. Christenson et al., Evidence for the 2π decay of the K20 meson, Phys. Rev. Lett. 13, 138 (1964).
H. S. Leavitt, 1777 variables in the magellanic clouds, Harvard Obs. Annals 60, 87 (1908).
H. S. Leavitt e E. C. Pickering, Periods of 25 variable stars in the small magellanic cloud, Harvard Obs. Circ. 173, 1 (1912).
Planck Collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)]. ArXiv: 1807.06209.
J. Yadav et al., Testing homogeneity on large scales in the Sloan Digital Sky Survey Data Release One, Mon. Not. Roy. Astron. Soc. 364, 601 (2005). ArXiv:astro-ph/0504315.
A. A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30, 682 (1979).
A. H. Guth, Inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23, 347 (1981).
G. Steigman, Primordial nucleosynthesis: successes and challenges, Int. J. Mod. Phys. E 15, 1 (2006). ArXiv:astro-ph/0511534.
M. D’Onofrio, K. Rummukainen e A. Tranberg, Sphaleron rate in the minimal standard model, Phys. Rev. Lett. 113(14), 141602 (2014). ArXiv:1404.3565.
Planck Collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641, A10 (2020). ArXiv:1807. 06211.
BICEP/Keck Collaboration, Improved constraints on primordial gravitational waves using Planck, WMAP, and BICEP/Keck observations through the 2018 observing season, Phys. Rev. Lett. 127(15), 151301 (2021). ArXiv:2110.00483.
B. D. Fields et al., Big-Bang nucleosynthesis after Planck, JCAP 03, 010 (2020), [Erratum: JCAP 11, E02 (2020)]. ArXiv:1912. 01132.
Particle Data Group, Review of particle physics, PTEP 2020(8), 083C01 (2020).
W. Hu e S. Dodelson, Cosmic microwave background anisotropies, Ann. Rev. Astron. Astrophys. 40, 171 (2002). ArXiv: astro-ph/0110414.
V. Poulin et al., Where do the AMS-02 antihelium events come from?, Phys. Rev. D 99(2), 023016 (2019). ArXiv:1808.08961.
P. F. de Salas et al., Bounds on very low reheating scenarios after Planck, Phys. Rev. D 92(12), 123534 (2015). ArXiv:1511. 00672.
O. W. Greenberg, CPT violation implies violation of Lorentz invariance, Phys. Rev. Lett. 89, 231602 (2002). ArXiv:hep-ph/ 0201258.
G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett. 37, 8 (1976).
V. A. Kuzmin, V. A. Rubakov e M. E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155, 36 (1985).
M. B. Gavela et al., Standard model CP violation and baryon asymmetry, Mod. Phys. Lett. A 9, 795 (1994). ArXiv:hep-ph/ 9312215.
P. Huet e E. Sather, Electroweak baryogenesis and standard model CP violation, Phys. Rev. D 51, 379 (1995). ArXiv:hep-ph/ 9404302.
K. Kajantie et al., A non-perturbative analysis of the finite-T phase transition in SU(2) × U(1) electroweak theory, Nucl. Phys. B 493, 413 (1997). ArXiv:hep-lat/9612006.
M. Laine e K. Rummukainen, What’s new with the electroweak phase transition?, Nucl. Phys. B Proc. Suppl. 73, 180 (1999). ArXiv: hep-lat/9809045.
D. E. Morrissey e M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14, 125003 (2012). ArXiv:1206.2942.
T. S. Roussy et al., A new bound on the electron’s electric dipole moment (2022). ArXiv:2212.11841.
G. Elor et al., New ideas in baryogenesis: a snowmass white paper , in Snowmass 2021 (2022). ArXiv:2203.05010.
M. Fukugita e T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174, 45 (1986).
P. Minkowski, µ → eγ at a rate of one out of 109 Muon Decays?, Phys. Lett. B 67, 421 (1977).
R. N. Mohapatra e G. Senjanovic, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44, 912 (1980). Cadernos de Astronomia, vol. 4, n◦ 2, 46-61 (2023).
S. L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 61, 687 (1980).
M. Gell-Mann, P. Ramond e R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927, 315 (1979). ArXiv:1306. 4669.
I. Esteban et al., The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09, 178 (2020). ArXiv: 2007.14792.
NuFIT 5.2: Three-neutrino fit based on data available in November 2022. Disponível em http://www.nu-fit.org/?q=node/ 12, acesso em ago. 2023.
V. Cirigliano et al., Neutrinoless double-beta decay: a roadmap for matching theory to experiment (2022). ArXiv:2203.12169.
The T2K Collaboration, Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations, Nature 580(7803), 339 (2020), [Erratum: Nature 583, E16 (2020)]. ArXiv:1910.03887.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Chee Sheng Fong
This work is licensed under a Creative Commons Attribution 4.0 International License.