The speed-distance relationship for galaxies established by Edwin Hubble

Authors

DOI:

https://doi.org/10.47456/Cad.Astro.v5n1.43115

Keywords:

Hubble constant, history of cosmology, Hubble-Lemaître law

Abstract

The linear relation between the recession velocities of galaxies and their distances or, equivalently, between the redshifts in the spectra of galaxies and their distances, currently known as the Hubble-Lemaître law, is a fundamental result in the area of Cosmology, which can be understood, according to the standard cosmological model, as a consequence of an expanding Universe. In a pioneering work published in 1929, Edwin Hubble (1889-1953) provided consistent evidence for the validity of this law, based on observational data. An English to Portuguese translation of this influential article is presented here.

Downloads

Download data is not yet available.

References

[1] G. J. Whitrow, Dicionário de biografias científicas (Contraponto, Rio de Janeiro, 2007).

[2] H. S. Leavitt e E. C. Pickering, Periods of 25 Variable Stars in the Small Magellanic Cloud, HCOC 173(1) (1912). Disponível em https://ui.adsabs.harvard.edu/abs/1912HarCi.173....1L, acesso em jan. 2024.

[3] D. Iria Machado, As estrelas Cefeidas enquanto velas-padrão: A relação período-luminosidade tal qual apresentada por sua descobridora, Cadernos de Astronomia 2(2), 170 (2021). DOI: https://doi.org/10.47456/Cad.Astro.v2n2.34906

[4] H. S. Kragh, Conceptions of Cosmos: From Myths to the Accelerating Universe: A History of Cosmology (Oxford University Press, Oxford, 2007). DOI: https://doi.org/10.1093/acprof:oso/9780199209163.003.0002

[5] B. W. Carroll e D. A. Ostlie, An Introduction to Modern Astrophysics (Pearson Addison-Wesley, Boston, 2007).

[6] E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, PNAS 15(3), 168 (1929). DOI: https://doi.org/10.1073/pnas.15.3.168

[7] G. Paturel, P. Teerikorpi e Y. Baryshev, Hubble Law: Measure and Interpretation, Found Phys. 47(9), 1208 (2017). ArXiv:1801.00128. DOI: https://doi.org/10.1007/s10701-017-0093-4

[8] A. Liddle, An Introduction to Modern Cosmology (Wiley, Chichester, 2015), 3a ed.

[9] G. Lemaître, Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques, Ann. Soc. Sci. Bruxelles A47(49) (1927). Disponível em https://ui.adsabs.harvard.edu/abs/1927ASSB...47...49L/abstract, acesso em jan. 2024.

[10] E. Gibney, Belgian priest recognized in Hubble-law name change, Nature - News, 30 out. (2018). DOI: https://doi.org/10.1038/d41586-018-07234-y

[11] N. A. Bahcall, Hubble’s law and the expanding universe, PNAS 112(11), 3173 (2015). DOI: https://doi.org/10.1073/pnas.1424299112

[12] W. L. Freedman et al., Final results from the Hubble Space Telescope key project to measure the Hubble constant, ApJ 553(1), 47 (2001). ArXiv:astro-ph/0012376. DOI: https://doi.org/10.1086/320638

[13] W. L. Freedman, Measurements of the Hubble constant: tensions in perspective, ApJ 919(1), 16 (2021). DOI: https://doi.org/10.3847/1538-4357/ac0e95

Published

15-03-2024

How to Cite

[1]
D. I. Machado, “The speed-distance relationship for galaxies established by Edwin Hubble”, Cad. Astro., vol. 5, no. 1, pp. 231–240, Mar. 2024.

Issue

Section

Textos Clássicos