Stellar occultations: 10 years since the discovery of the Chariklo rings, and advances in the study of the Solar System

Authors

DOI:

https://doi.org/10.47456/Cad.Astro.v5n2.45931

Keywords:

Stellar occultation, Rings, Small Solar System Objects, Citizen Science

Abstract

About 10 years ago, we announced the discovery of the first ring system around a Small Solar System Object. The feat was possible thanks to the use of the stellar occultation technique, which has been widely used to characterize objects in the Solar System. Its high spatial resolution allows determining the dimensions and shapes with great precision for many objects, from those close to Earth to those farthest from the Sun. In addition to the Chariklo rings discovered in 2013, rings have been identified around the dwarf planet Haumea and the trans-Neptunian object Quaoar. This shows that rings may be common in the Outer Solar System since previously imagined limits, such as the Roche Limit, do not apply to these rings. Brazilian researchers and citizen astronomers have played a fundamental role in this research, which, thanks to the LSST, may expand considerably in the coming years.

Downloads

Download data is not yet available.

References

F. Braga-Ribas et al., A ring system detected around the Centaur (10199) Chariklo, Nature 508(7494), 72 (2014). ArXiv: 1409.7259.

F. Braga-Ribas et al., Database on detected stellar occultations by small outer Solar System objects, Journal of Physics: Conference Series 1365(1), 012024 (2019).

B. Sicardy et al., Constraints on Charon’s Orbital Elements from the Double Stellar Occultation of 2008 June 22, The Astronomical Journal 141(2), 67 (2011).

J. L. Ortiz et al., Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation, Nature 491(7425), 566 (2012).

E. Meza et al., Lower atmosphere and pressure evolution on Pluto from ground-based stellar occultations, 1988-2016, Astronomy & Astrophysics 625, A42 (2019). ArXiv: 1903.02315.

J. Marques Oliveira et al., Constraints on the structure and seasonal variations of Triton’s atmosphere from the 5 October 2017 stellar occultation and previous observations, Astronomy & Astrophysics 659, A136 (2022). ArXiv:2201.10450.

F. Braga-Ribas et al., Constraints on (2060) Chiron’s size, shape, and surrounding material from the November 2018 and September 2019 stellar occultations, Astronomy & Astrophysics 676, A72 (2023). ArXiv:2308. 10042.

C. L. Pereira et al., The two rings of (50000) Quaoar, Astronomy & Astrophysics 673, L4 (2023). ArXiv:2304.09237.

A. Dias-Oliveira et al., Study of the Plutino Object (208996) 2003 AZ84 from Stellar Occultations: Size, Shape, and Topographic Features, The Astronomical Journal 154(1), 22 (2017). ArXiv:1705.10895.

F. L. Rommel et al., A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS4 measured from stellar occultations, Astronomy & Astrophysics 678, A167 (2023). ArXiv:2308.08062.

A. A. Sickafoose et al., A stellar occultation by Vanth, a satellite of (90482) Orcus, Icarus 319, 657 (2019). ArXiv:1810.08977.

F. Braga-Ribas et al., Present and Future of Stellar Occultation by Transneptunian Satellites and Binaries and their use to update the orbits of Vanth and Weywot (2024), submetido ao Philosophical Transactions A.

E. Fernández-Valenzuela et al., Physical properties of Hi’iaka from stellar occultation data 53(7) (2021). Disponível em https://baas.aas.org/pub/2021n7i503p05, acesso em set. 2024.

F. L. Rommel et al., Physical properties of (38628) Huya and its satellite from stellar occultations (2024), submetido ao Planetary and Space Journal.

M. Assafin, Differential aperture photometry and digital coronagraphy with PRAIA, Planetary and Space Science 239, 105816 (2023). ArXiv:2311.14152.

A. R. Gomes-Júnior et al., SORA: Stellar Occultation Reduction and Analysis, Monthly Notices of the Royal Astronomical Society (2022). ArXiv:2201.01799.

F. Braga-Ribas et al., The Size, Shape, Albedo, Density, and Atmospheric Limit of Transneptunian Object (50000) Quaoar from Multi-chord Stellar Occultations, The Astrophysical Journal 773(1), 26 (2013).

J. L. Ortiz et al., The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation, Nature 550(7675), 219 (2017). ArXiv:2006.03113.

B. E. Morgado et al., A dense ring of the trans-Neptunian object Quaoar outside its Roche limit, Nature 614(7947), 239 (2023).

J. L. Ortiz et al., Changing material around (2060) Chiron revealed by an occultation on December 15, 2022, Astronomy & Astrophysics 676, L12 (2023). ArXiv:2308.03458.

D. Bérard et al., The Structure of Chariklo’s Rings from Stellar Occultations, The Astronomical Journal 154(4), 144 (2017). ArXiv:1706.00207.

B. E. Morgado et al., Refined physical parameters for Chariklo’s body and rings from stellar occultations observed between 2013 and 2020, Astronomy & Astrophysics 652, A141 (2021). ArXiv:2107.07904.

P. Santos-Sanz et al., The rings of Centaur Chariklo revealed by a stellar occultation observed by JWST, Bulletin of the AAS 55(8) (2023). Disponível em https://baas.aas.org/pub/2023n8i301p07, acesso em set. 2024.

J. L. Ortiz et al., Possible ring material around centaur (2060) Chiron, Astronomy & Astrophysics 576, A18 (2015). ArXiv: 1501.05911.

A. A. Sickafoose et al., Material Around the Centaur (2060) Chiron from the 2018 November 28 UT Stellar Occultation (2023). ArXiv:2310.16205.

B. Sicardy et al., Ring dynamics around non-axisymmetric bodies with application to Chariklo and Haumea, Nature Astronomy 3, 146 (2019). ArXiv:1811.09437.

Y. Kilic et al., Occultation portal: A web-based platform for data collection and analysis of stellar occultations, Monthly Notices of the Royal Astronomical Society 515(1), 1346 (2022). ArXiv:2206.09615.

Published

26-09-2024

How to Cite

[1]
F. B. Ribas, “Stellar occultations: 10 years since the discovery of the Chariklo rings, and advances in the study of the Solar System”, Cad. Astro., vol. 5, no. 2, p. 56–64, Sep. 2024.

Issue

Section

Seção Temática