Measuring the distance to the Large Magellanic Cloud using type II Cepheids
DOI:
https://doi.org/10.47456/Cad.Astro.v6n2.47664Keywords:
Cepheids, distances, period-luminosity relation, Large Magellanic CloudAbstract
This article discusses methods for measuring distances in Astronomy, with an emphasis on the use of pulsating Cepheid stars. Their astrophysical properties are evaluated, their variations distinguished, and the appropriate period-luminosity relationship is applied to determine the distance to the irregular galaxy Large Magellanic Cloud. Based on Type II Cepheid data extracted from the OGLE III catalog and modeled in Google Colab, a distance histogram was generated, showing that the most probable distance is 46,03 ± 0,03 kpc, and the most frequent range between 49 and 50 kpc, results that are consistent with recent studies. It is worth highlighting that this study is the result of a Junior Scientific Initiation scholarship from the PICTI program of Ifes, funded by CNPq, and which the result presented at the Mostra de Astronomia do Espírito Santo (MAES) 2024 by a student from Ifes Campus Guarapari.
References
[1] M. de Fatima Oliveira Saraiva, Astronomia & Astrofísica (Editora Livraria da Física, São Paulo, 2004).
[2] S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008).
[3] D. R. Faulkner, Astronomical distance determination methods and the light travel time problem, Answers Research Journal 6, 211 (2013). Disponível em https://answersresearchjournal.org/astronomical-distance-light-travel-time/, acesso em ago. 2025.
[4] D. I. Machado, As estrelas cefeidas enquanto velas-padrão: A relação período-luminosidade tal qual apresentada por sua descobridora, Cadernos de Astronomia 2(2), 170 (2021).
[5] G. de Almeida, Norman Robert Pogson e a escala de magnitudes estelares, Gazeta de Física 34(3/4), 52 (2011). Disponível em https://www.spf.pt/magazines/GFIS/10/article/827/pdf, acesso em ago. 2025.
[6] C. Sterken e K. B. Staubermann, Karl Friedrich Zoellner and the historical dimension of astronomical photometry: a collection of papers on the history of photometry, The Journal of Astronomical Data (JAD) 6(7) (2000).
[7] A. Batalha e L. Campos, Estrelas Cefeidas e RR Lyrae, Notas de aula, aula 8 (2015).
[8] J. D. Fernie, The period-luminosity relation: A historical review, Publications of the Astronomical Society of the Pacific 81(483), 707 (1969).
[9] R. K. Madejsky, Curso Básico de Astrofísica e Cosmologia (UEFS Editora, Feira de Santana, 2014).
[10] M. Szymanski et al., The Optical Gravitational Lensing Experiment. OGLE-III Photometric Maps of the Galactic Bulge Fields (2011). ArXiv:1107.4008.
[11] D. R. Albert, Monte Carlo Uncertainty Propagation with the NIST Uncertainty Machine, Journal of Chemical Education 97(5), 1491 (2020).
[12] G. Pietrzynski et al., A distance to the Large Magellanic Cloud that is precise to one per cent, Nature 567(7747), 200 (2019).
[13] J. J. S. Medina, Comparison of different methods to determine the distance to LMC (2025). ArXiv:2503.21120.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Anna Carolyna B. Breda, Adriano M. Oliveira, Augusto C. T. Monteiro

This work is licensed under a Creative Commons Attribution 4.0 International License.



