Um Primeiro passo em direção à modificação da gravidade: Teorias Escalar-Tensoriais e f(R)
DOI:
https://doi.org/10.47456/Cad.Astro.v3n2.37208Palabras clave:
Gravidade Modificada, Astrofísica, Cosmologia, GravitaçãoResumen
A relatividade geral, apesar de seus sucessos, é hoje entendida como uma teoria aberta a possibilidades de modificação. Neste artigo buscamos introduzir de maneira didática a base de uma classe de teorias que busca preencher algumas lacunas deixadas pela relatividade geral, as teorias f(R) e escalar-tensoriais. Construímos as teorias a partir de um princípio de ação e obtemos suas equações de campo. Mostramos a equivalência entre as duas teorias e comentamos sobre mecanismos de blindagem. Por fim, mostramos alguns resultados observacionais sobre modificações da relatividade geral dentro do contexto dessas teorias.
Descargas
Citas
C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge Univesity Press, 2018), 2 ed.
C. M. Will, The Confrontation between General Relativity and Experiment, Living Reviews in Relativity 5, 1 (2006). ArXiv: arXiv:1403.7377v1.
E. Poisson e C. M. Will, Gravity: Newtonian, Post-Newtonian, Relativistic (Cambridge University Press, 2014).
O. F. Piattella, Introdução à relatividade geral, Cadernos de Astronomia 1(1), 30 (2020).
J. D. Toniato, De newton a einstein: a geometrização da gravitação, Cadernos de Astronomia 1(1), 17 (2020).
M. H. Goroff e A. Sagnotti, The ultraviolet behavior of einstein gravity, Nuclear Physics B 266(3), 709 (1986).
R. P. Feynman, F. B. Morinigo e W. G. Wagner, Feynman Lectures on Gravitation (Addison-Wesley, 1999).
I. L. Buchbinder e I. Shapiro, Introduction to Quantum Field Theory with Applications to Quantum Gravity (Oxford University Press, 2021).
A. G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, The Astronomical Journal 116(3), 1009 (1998).
T. Clifton et al., Modified gravity and cosmology, Physics Reports 513(1-3), 1 (2012).
P. G. Ferreira, Cosmological tests of gravity, Annual Review of Astronomy and Astrophysics 57(1), 335 (2019).
A. Joyce et al., Beyond the cosmological standard model, Physics Reports 568, 1 (2015).
M. Peskin e D. Schroeder, An Introduction To Quantum Field Theory (Westview Press, New York, 1995).
C. Brans e R. H. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev. 124, 925 (1961).
H. Weyl, Gravitation und Elektrizität Gravitation and electricity, Sitz. Kön. Preuss. Akad. Wiss 1918, 465 (1918).
A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover Publications, 1980).
J. Polchinski, String Theory, vol. 1 (Cambridge University Press, 1998).
P. A. M. Dirac, The Cosmological Constants, Nature 139(3512), 323 (1937).
R. P. Woodard, The Theorem of Ostrogradsky, Tech. rep. (2015). ArXiv:1506.02210v2.
R. M. Wald, General relativity (Chicago Univ. Press, Chicago, IL, 1984).
T. Sotiriou, V. Faraoni e S. Liberati, Theory of gravitation theories: A no-progress report, International Journal of Modern Physics D 17 (2007).
N. D. Birrell e P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1982).
V. Faraoni, Nonminimal coupling of the scalar field and inflation, Phys. Rev. D 53, 6813 (1996).
V. Faraoni, A crucial ingredient of inflation, Int. J. Theor. Phys. 40(12), 2259 (2001).
R. F. P. Mendes e N. Ortiz, Highly compact neutron stars in scalar-tensor theories of gravity: Spontaneous scalarization versus gravitational collapse, Phys. Rev. D 93, 124035 (2016).
R. F. P. Mendes e T. Ottoni, Scalar charges and pulsar-timing observables in the presence of nonminimally coupled scalar fields, Phys. Rev. D 99, 124003 (2019).
G. Esposito-Farèse e D. Polarski, Scalar-tensor gravity in an accelerating universe, Physical Review D 63 (2000).
B. Bertotti, L. Iess e P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425(6956), 374 (2003).
A. K. Verma et al., Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity, Astron. Astrophys. 561, 1 (2014). ArXiv:1306.5569.
A. A. Starobinsky, A new type of isotropic cosmological models without singularity, Physics Letters B 91(1), 99 (1980).
T. P. Sotiriou e V. Faraoni, f (R) theories of gravity, Reviews of Modern Physics 82(1), 451 (2010).
A. Dolgov e M. Kawasaki, Can modified gravity explain accelerated cosmic expansion?, Physics Letters B 573, 1 (2003).
I. L. Buchbinder, I. L. Shapiro e S. D. Odintsov, Effective Action in Quantum Gravity (Bristol, 1992).
W. Hu e I. Sawicki, Models of f(R) Cosmic Acceleration that Evade Solar-System Tests, Physical Review D (2007). ArXiv:0705.1158.
E. V. Linder, Exponential gravity, Physical Review D 80(12) (2009).
L. D. Landau e E. M. Lifshitz, Mechanics, Third Edition: Volume 1 (Course of Theoretical Physics) (Butterworth-Heinemann, 1976), 3 ed.
T. P. Sotiriou, S. Liberati e V. Faraoni, Theory of gravitation theories: A no-progress report, International Journal of Modern Physics D 17(03n04), 399 (2008).
I. Alani e O. P. Santillán, Cosmological singularity theorems for f (R) gravity theories, Journal of Cosmology and Astroparticle Physics 2016(05), 023 (2016).
J. Khoury e A. Weltman, Chameleon Cosmology, Physical Review D 69, 044026 (2003). ArXiv:0309411.
J. Khoury e A. Weltman, Chameleon fields: Awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93, 171104 (2004).
K. Hinterbichler et al., Symmetron cosmology, Physical Review D 84(10) (2011).
A. Vainshtein, To the problem of nonvanishing gravitation mass, Physics Letters B39(3), 393 (1972).
C. Burrage e J. Sakstein, Tests of chameleon gravity, Living Reviews in Relativity 21(1) (2018).
C. Misner, Gravitation (Princeton University Press, Princeton, N.J, 2017).
R. F. P. Mendes, Estrelas de nêutrons e seus múltiplos mensageiros, Cadernos de Astronomia 2(2), 58 (2021).
I. H. Stairs, Testing general relativity with pulsar timing, Living Rev. Relativ. 6(1), 5 (2003).
N. Wex, Testing Relativistic Gravity with Radio Pulsars, in Frontiers in Relativistic Celestial Mechanics, editado por S. M. Kopeikin (De Gruyter, Berlim, 2014), vol. 2, 39.
T. Damour e G. Esposito-farese, Nonpertubative strong-field effects in tensor-scalar theories of gravitation, Phys. Rev. Lett. 70(15), 2 (1993).
M. Kramer e N. Wex, The double pulsar system: A unique laboratory for gravity, Class. Quantum Gravity 26(7) (2009).
M. Kramer et al., Strong-field gravity tests with the double pulsar, Phys. Rev. X 11, 041050 (2021).
O. Piattella, Lecture Notes in Cosmology (Springer International Publishing, 2018).
N. Said et al., New constraints on the dark energy equation of state, Physical Review D 88(4) (2013).
H. Velten, Matéria escura e as estruturas cósmicas, Cadernos de Astronomia 2(1), 58 (2021).
M. Martinelli et al., Constraining modified gravitational theories by weak lensing with Euclid, Physical Review D 83(2) (2011).
G.-B. Zhao et al., Model-independent constraints on dark energy and modified gravity with the SKA (2015). ArXiv:1501.03840.
S. Tsujikawa, Matter density perturbations and effective gravitational constant in modified gravity models of dark energy, Physical Review D 76(2) (2007).
D. Huterer et al., Growth of cosmic structure: Probing dark energy beyond expansion, Astroparticle Physics 63, 23 (2015).
P. Coles, Cosmology: the origin and evolution of cosmic structure (John Wiley, Chichester, Eng, 2002).
S. Nesseris, G. Pantazis e L. Perivolaropoulos, Tension and constraints on modified gravity parametrizations of Gef f (z) from growth
rate and Planck data, Physical Review D 96(2) (2017).
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Pedro Bessa, Túlio Ottoni
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.