Habitabilidade em luas de sistemas planetários: uma nova fronteira
DOI:
https://doi.org/10.47456/Cad.Astro.v3n2.38804Palabras clave:
habitabilidade, sistema solar, condições para vidaResumen
Os voos espaciais realizados nas décadas 80-2000 trouxeram imensos progressos em nossos conhecimentos sobre as condições físicas e químicas existentes nas grandes luas dos planetas gigantes gasosos do Sistema Solar. Sobrevoos próximos sobretudo de Titan, Europa e Enceladus revelaram características surpreendentes sobre essas luas e permitiram compor um quadro bastante detalhado de suas superfícies e interiores e da atmosfera, no caso de Titan. A descoberta de oceanos interiores em praticamente todas as grandes luas de Saturno e Júpiter abriu a extraordinária perspectiva de poder existir vida extremófila nesses locais, algo desconhecido antes. Neste artigo, apresentamos características, sobretudo sobre essas três luas, e argumentos que defendem essa tese: uma nova zona de habitabilidade parece existir nos satélites rochosos de exoplanetas gigantes gasosos, multiplicando a possibilidade de existir vida extremófila através da Via Láctea.
Descargas
Citas
K. Olsson-Francis et al., Editorial: Habitability beyond Earth, Front. Microbiol. 9, 2645 (2018).
J. F. Kasting, D. P. Whitmire e R. T. Reynolds, Habitable zones around Main Sequence Stars, Icarus 101(1), 108 (1993).
R. Shapiro, Origin of life: crucial issues, in Planets and Life: The Emerging Science of Astrobiology, editado por W. T. Sullivan III e J. Baross (Cambridge University Press, 2007).
J. I. Lunine, Ocean worlds exploration, Acta Astronaut. 131, 123 (2017).
D. R. Williams, Solar System Small Worlds Fact Sheet, NASA Space Science Data Coordinated Archive (2016). Disponível em https://nssdc.gsfc.nasa.gov/planetary/factsheet/galileanfact_table.html, acesso em jun. 2022.
D. R. Williams, Jovian Satellite Fact Sheet, NASA Space Science Data Coordinated Archive (2018). Disponível em https://nssdc.gsfc.nasa.gov/planetary/factsheet/joviansatfact.html, acesso em jun. 2022.
D. R. Williams, Saturnian Satellite Fact Sheet, NASA Space Science Data Coordinated Archive (2019). Disponível em https://nssdc.gsfc.nasa.gov/planetary/factsheet/saturniansatfact.html, acesso em jun. 2022.
Enceladus, NASA Solar System Exploration. Disponível em https://solarsystem.nasa.gov/moons/saturn-moons/enceladus/by-the-numbers/, acesso em jun. 2022.
D. R. Williams, Moon Fact Sheet, NASA Space Science Data Coordinated Archive (2021). Disponível em https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html, acesso em jun. 2022.
G. Mitri et al., Exploration of Enceladus and Titan: investigating ocean worlds’ evolution and habitability in the Saturn system, Exp. Astron. (2021).
E. Garcia-Lopez e C. Cid, Glaciers and ice sheets as analog environments of potentially habitable icy worlds, Front. Microbiol. 8, 1407 (2017).
L. Carré et al., Relevance of earth-bound extremophiles in the search for extraterrestrial life, Astrobiology 22(3), 322 (2022).
I. von Hegner, An ab initio definition of life pertaining to Astrobiology (2019). Disponível em https://hal.archives-ouvertes.fr/hal-02272413, acesso em ago. 2022.
R. Heller et al., Formation, habitability, and detection of extrasolar moons, Astrobiology 14(9), 798 (2014).
M. Schulte et al., Serpentinization and its implications for life on the early Earth and Mars, Astrobiology 6(2), 364 (2006).
P. Judge, A novel strategy to seek biosignatures at Enceladus and Europa, Astrobiology 17(9), 852 (2017).
J. Kotlarz et al., Microbial component detection in Enceladus snowing phenomenon, Astrophys. Bull. 75(2), 166 (2020).
R.-S. Taubner et al., Biological methane production under putative Enceladus-like conditions, Nat. Commun. 9(1), 748 (2018).
K. Takai, Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system, Int. J. Syst. Evol. Microbiol. 52(4), 1089 (2002).
S. Ferraz-Mello, Dynamics of galilean satellites. An introductory treatise (Universidade de São Paulo, São Paulo, 1979).
Working Group for Planetary System Nomenclature (WGPSN), Planet and Satellite Names, Discoverers and Themes, Gazetteer of Planetary Nomenclature. Disponível em https://planetarynames.wr.usgs.gov/Page/Planets, acesso em jan. 2022.
R. Greenberg, Unmasking Europa (Springer, New York, NY, 2014), 2008 ed.
E. Lesage et al., Constraints on effusive cryovolcanic eruptions on Europa using topography obtained from Galileo images, Icarus 361(114373), 114373 (2021).
M. Melwani Daswani et al., A metamorphic origin for Europa’s ocean, Geophys. Res. Lett. 48(18), e2021GL094143 (2021).
M. A. Hesse et al., Downward oxidant transport through Europa’s ice shell by density-driven brine percolation, Geophys. Res. Lett. 49(5) (2022).
A. P. Vid’machenko et al., Asymmetry of reflective properties of the hemispheres of Jupiter satellite Europa, Astronomical School’s Report 7(1), 133 (2011).
A. P. Crósta et al., Exploring Habitability Conditions in Titan’s Impact Record: The Formation of Menrva Crater, in 52nd Lunar and Planetary Science Conference (2021), Lunar and Planetary Science Conference, 2309. Disponível em https://www.hou.usra.edu/meetings/lpsc2021/pdf/2309.pdf, acesso em ago. 2022.
Titan, NASA Solar System Exploration. Disponível em https://solarsystem.nasa.gov/missions/cassini/science/titan/, acesso em jun. 2022.
J. Stevenson, J. Lunine e P. Clancy, Membrane alternatives in worlds without oxygen: Creation of an azotosome, Sci. Adv. 1(1), e1400067 (2015).
G. R. Osinski et al., The role of meteorite impacts in the origin of life, Astrobiology 20(9), 1121 (2020).
A. M. Schoenfeld, A. Yin e E. Leonard, A dust-devil-like vortex in Enceladus’ ocean: a model for rapid transport of hydrothermal products from ocean floor to erupting ice-shell fractures, in 51st Lunar and Planetary Science Conference (2020). Disponível em https://www.hou.usra.edu/meetings/lpsc2020/pdf/2821.pdf, acesso em ago. 2022.
K. Zhang e F. Nimmo, Internal structure of Enceladus and Dione from Orbital Constraints, in 40th Lunar and Planetary Science Conference (2009). Disponível em https://www.lpi.usra.edu/meetings/lpsc2009/pdf/2199.pdf, acesso em ago. 2022.
C. J. Hansen, L. W. Esposito e A. R. Hendrix, Ultraviolet observation of Enceladus’ plume in transit across Saturn, compared to Europa, Icarus 330, 256 (2019).
A. P. Ingersoll, S. P. Ewald e S. K. Trumbo, Time variability of the Enceladus plumes: Orbital periods, decadal periods, and aperiodic change, Icarus 344(113345), 113345 (2020).
B. D. Teolis et al., Enceladus plume structure and time variability: Comparison of cassini observations, Astrobiology 17(9), 926 (2017).
T. Cavalié et al., Herschel map of saturn’s stratospheric water, delivered by the plumes of enceladus, Astron. Astrophys. 630, A87 (2019).
Enceladus the Powerhouse (2011). Disponível em https://www.jpl.nasa.gov/images/enceladus-the-powerhouse, acesso em jun. 2022.
Perguntas frequentes, Itaipu Binacional. Disponível em https://www.itaipu.gov.br/sala-de-imprensa/perguntas-frequentes, acesso em mar. 2021.
L. F. Coelho e Z. Martins, The Geochemistry of Icy Moons, in Encyclopedia of Geology, 2 ed., editado por D. Alderton e S. A. Elias (Academic Press, Oxford, 2021), 207.
M. Benisty et al., A circumplanetary disk around PDS70c, Astrophys. J. Lett. 916(1), L2 (2021).
D. Kipping et al., An exomoon survey of 70 cool giant exoplanets and the new candidate Kepler-1708 b-i, Nat. Astron. 6(3), 367 (2022).
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Eduardo Janot Pacheco, Vitória Bellecerie da Fonseca
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.