Enriquecimento químico nos centros em aglomerados e grupos de galáxias com núcleos frios observados com Suzaku
DOI:
https://doi.org/10.47456/Cad.Astro.v5nEspecial.44962Palabras clave:
Astrofísica, supernovas, meio intra-aglomerado, meio intragrupoResumen
Este estudo investiga a distribuição da fração de massa de Ferro (Fe) proveniente de Supernovas do Tipo II (SNII) em comparação com Supernovas do Tipo Ia (SNIa) em dezoito aglomerados e grupos de galaxias com núcleos frios observados com Suzaku. Utilizando os modelos teóricos de explosões de supernovas mais bem avaliados por [1], calculamos tal fração a partir de oito razões de abundância nas regiões dos núcleos frios e em suas regiões externas. A região interna demonstra uma contribuição menor da fração de massa de Fe de SNII/SNIa em comparação com a região externa. A média ponderada das frações de massa de Fe de SNII/SNIa, derivada das oito razões de abundância medidas, aumenta de 17, 0 ± 0, 2 para 21, 3 ± 0, 6. Esse aumento médio indica que a região interna possui uma fração percentual de massa de Fe proveniente de SNIa maior do que na região externa. Entre os mecanismos de enriquecimento químico em aglomerados e grupos de galaxias, este resultado sugere que a pressão de arraste na região central desses aglomerados de galáxias desempenha um papel crucial no enriquecimento químico dessas regiões, corroborando descobertas anteriores.
Descargas
Citas
R. M. Batalha, R. A. Dupke e Y. Jiménez-Teja, Ranking Theoretical Supernovae Explosion Models from Observations of the Intracluster Gas, Annual Review of Astronomy & Astrophysics 262(1), 27 (2022). ArXiv:2207.00601. DOI: https://doi.org/10.3847/1538-4365/ac7de1
K. Maeda e Y. Terada, Progenitors of type Ia supernovae, International Journal of Modern Physics D 25, 1630024 (2016). ArXiv:1609.03639.
I. R. Seitenzahl e D. M. Townsley, Nucleosynthesis in Thermonuclear Supernovae (2017), 1955. DOI: https://doi.org/10.1007/978-3-319-21846-5_87
M. Livio e P. Mazzali, On the progenitors of Type Ia supernovae, Physics Reports 736, 1 (2018). ArXiv:1802.03125. DOI: https://doi.org/10.1016/j.physrep.2018.02.002
K. Nomoto, C. Kobayashi e N. Tominaga, Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies, Annual Review of Astronomy & Astrophysics 51(1), 457 (2013). DOI: https://doi.org/10.1146/annurev-astro-082812-140956
S. Schindler e A. Diaferio, Metal Enrichment Processes, Space Science Reviews 134(1-4), 363 (2008). ArXiv:0801.1061. DOI: https://doi.org/10.1007/s11214-008-9321-8
F. Mernier et al., Enrichment of the Hot Intracluster Medium: Observations, Space Science Reviews 214(8), 129 (2018). ArXiv:1811.01967. DOI: https://doi.org/10.1007/s11214-018-0565-7
R. B. Larson e H. L. Dinerstein, Gas loss in groups of galaxies, Publications of the Astronomical Society of the Pacific 87, 911 (1975). DOI: https://doi.org/10.1086/129870
J. E. Gunn e J. R. Gott, III, On the Infall of Matter Into Clusters of Galaxies and Some Effects on Their Evolution, The Astrophysical Journal 176, 1 (1972). DOI: https://doi.org/10.1086/151605
V. Biffi, F. Mernier e P. Medvedev, Enrichment of the Hot Intracluster Medium: Numerical Simulations, Space Science Reviews 214(8), 123 (2018). ArXiv:1811.01955. DOI: https://doi.org/10.1007/s11214-018-0557-7
K. Maeda e Y. Terada, Progenitors of type Ia supernovae, International Journal of Modern Physics D 25(10), 1630024 (2016). ArXiv:1609.03639. DOI: https://doi.org/10.1142/S021827181630024X
S. T. Ohlmann et al., The white dwarf’s carbon fraction as a secondary parameter of Type Ia supernovae, Astronomy & Astrophysics 572, A57 (2014). ArXiv:1409.2866. DOI: https://doi.org/10.1051/0004-6361/201423924
K. Nomoto et al., Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution, Nuclear Physics A 777, 424 (2006). ArXiv:astro-ph/0605725. DOI: https://doi.org/10.1016/j.nuclphysa.2006.05.008
S. De Grandi e S. Molendi, Metallicity Gradients in X-Ray Clusters of Galaxies, Annual Review of Astronomy & Astrophysics 551(1), 153 (2001). ArXiv:astro-ph/0012232. DOI: https://doi.org/10.1086/320098
K. W. Cavagnolo et al., Intracluster Medium Entropy Profiles for a Chandra Archival Sample of Galaxy Clusters, Annual Review of Astronomy & Astrophysics 182(1), 12 (2009). ArXiv:0902.1802. DOI: https://doi.org/10.1088/0067-0049/182/1/12
R. A. Dupke e I. White, Raymond E., Constraints on Type IA Supernova Models from X-Ray Spectra of Galaxy Clusters, Annual Review of Astronomy & Astrophysics 528(1), 139 (2000). ArXiv:astro-ph/9907343. DOI: https://doi.org/10.1086/308181
D. Eckert, S. Molendi e S. Paltani, The cool-core bias in X-ray galaxy cluster samples. I. Method and application to HIFLUGCS, Astronomy & Astrophysics 526, A79 (2011). ArXiv:1011.3302. DOI: https://doi.org/10.1051/0004-6361/201015856
J. Rasmussen e T. J. Ponman, Temperature and abundance profiles of hot gas in galaxy groups – I. Results and statistical analysis, Monthly Notices of the Royal Astronomical Society 380(4), 1554 (2007). Disponível em https://doi.org/10.1111/j.1365-2966.2007.12191.x, ArXiv:https://academic.oup.com/mnras/article-pdf/380/4/1554/18689190/mnras0380-1554.pdf. DOI: https://doi.org/10.1111/j.1365-2966.2007.12191.x
R. P. Kraft et al., THE GAS DYNAMICS OF NGC 4472 REVEALED BYXMM-NEWTON, The Astrophysical Journal 727(1), 41 (2010). Disponível em https://doi.org/10.1088/0004-637x/727/1/41. DOI: https://doi.org/10.1088/0004-637X/727/1/41
K. Kolokythas et al., Evidence of AGN feedback and sloshing in the X-ray luminous NGC 1550 galaxy group, Monthly Notices of the Royal Astronomical Society 496(2), 1471 (2020). ArXiv:2005.12950. DOI: https://doi.org/10.1093/mnras/staa1506
S. Thölken et al., X-ray analysis of the galaxy group UGC 03957 beyond R200 with Suzaku, Astronomy & Astrophysics 592, A37 (2016). ArXiv:1603.05255. DOI: https://doi.org/10.1051/0004-6361/201527608
E. E. Salpeter, The Luminosity Function and Stellar Evolution., Annual Review of Astronomy & Astrophysics 121, 161 (1955). DOI: https://doi.org/10.1086/145971
E. Anders e N. Grevesse, Abundances of the elements: Meteoritic and solar, Geochimica Cosmochimica Acta 53(1), 197 (1989). DOI: https://doi.org/10.1016/0016-7037(89)90286-X
P. Virtanen et al., SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17, 261 (2020).
J. S. Sanders et al., A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies, Monthly Notices of the Royal Astronomical Society 457(1), 82 (2016). ArXiv:1601.01489. DOI: https://doi.org/10.1093/mnras/stv2972
S. De Grandi et al., On the iron content in rich nearby clusters of galaxies, Astronomy & Astrophysics 419, 7 (2004). ArXiv:astro-ph/0310828. DOI: https://doi.org/10.1051/0004-6361:20034228
H. Böhringer et al., Implications of the central metal abundance peak in cooling core clusters of galaxies, Astronomy & Astrophysics 416, L21 (2004). ArXiv:astro-ph/0402216. DOI: https://doi.org/10.1051/0004-6361:20040047
A. Finoguenov, L. P. David e T. J. Ponman, An ASCA Study of the Heavy-Element Distribution in Clusters of Galaxies, Annual Review of Astronomy & Astrophysics 544(1), 188 (2000). ArXiv:astro-ph/9908150. DOI: https://doi.org/10.1086/317173
J. de Plaa et al., Chemical evolution in Sérsic 159-03 observed with XMM-Newton, Astronomy & Astrophysics 452(2), 397 (2006). ArXiv:astro-ph/0602582. DOI: https://doi.org/10.1051/0004-6361:20053864
A. Simionescu et al., Chemical enrichment in the cluster of galaxies Hydra A, Astronomy & Astrophysics 493(2), 409 (2009). ArXiv: 0809.2613. DOI: https://doi.org/10.1051/0004-6361:200810225
H. Böhringer e N. Werner, X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories, Astronomy & Astrophysics Reviews 18(1-2), 127 (2010). DOI: https://doi.org/10.1007/s00159-009-0023-3
F. Mernier et al., Radial metal abundance profiles in the intra-cluster medium of cool-core galaxy clusters, groups, and ellipticals, Astronomy & Astrophysics 603, A80 (2017). ArXiv: 1703.01183. DOI: https://doi.org/10.1051/0004-6361/201630075
S. Schindler et al., Metal enrichment processes in the intra-cluster medium, Astronomy & Astrophysics 435(2), L25 (2005). ArXiv: astro-ph/0504068. DOI: https://doi.org/10.1051/0004-6361:200500107
V. Baumgartner e D. Breitschwerdt, Metal enrichment of the intracluster medium: SN-driven galactic winds, Astronomische Nachrichten 330, 898 (2009). ArXiv:0908.1309. DOI: https://doi.org/10.1002/asna.200911258
E. Cucchetti et al., Athena X-IFU synthetic observations of galaxy clusters to probe the chemical enrichment of the Universe, Astronomy & Astrophysics 620, A173 (2018). ArXiv: 1809.08903. DOI: https://doi.org/10.1051/0004-6361/201833927
XRISM Science Team, Science with the X-ray Imaging and Spectroscopy Mission (XRISM), arXiv:2003.04962 (2020).
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Rebeca M. Batalha, Renato A. Dupke, Yolanda Jiménez-Teja
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.