Uma discussão sobre buracos negros quânticos
DOI :
https://doi.org/10.47456/Cad.Astro.v4n1.40314Mots-clés :
buracos negros, teoria quântica de campos em espaços curvos, gravitação quânticaRésumé
Neste trabalho iremos discutir os aspectos físicos principais referentes ao processo de criação de partículas perto do horizonte de eventos de um buraco negro. Para tanto, vamos examinar brevemente o formalismo da teoria quântica de campos em espaço-tempo curvo. Discutiremos sobre o porquê de se usar esta abordagem e como ela é utilizada para se estudar processos quânticos na vizinhança do horizonte de eventos de um buraco negro. Também apresentaremos resultados que revelam como buracos negros podem ser fundamentais na busca de uma teoria de gravitação quântica.
Téléchargements
Références
B. P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116(6), 061102 (2016). ArXiv:1602.03837.
B. P. Abbott et al., GW151226: Observation of Gravitational Waves from a 22-SolarMass Binary Black Hole Coalescence, Phys. Rev. Lett. 116(24), 241103 (2016). ArXiv: 1606.04855.
B. P. Abbott et al., GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118(22), 221101 (2017), [Erratum: Phys.Rev.Lett. 121, 129901 (2018)]. ArXiv: 1706.01812.
B. P. Abbott et al., GW170814: A ThreeDetector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett. 119(14), 141101 (2017). ArXiv: 1709.09660.
K. Akiyama et al., First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 875, L1 (2019). ArXiv:1906.11238.
K. Akiyama et al., First M87 Event Horizon Telescope Results. II. Array and Instrumentation, Astrophys. J. Lett. 875(1), L2 (2019). ArXiv:1906.11239.
K. Akiyama et al., First M87 Event Horizon Telescope Results. III. Data Processing and Calibration, Astrophys. J. Lett. 875(1), L3 (2019). ArXiv:1906.11240.
K. Akiyama et al., First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole, Astrophys. J. Lett. 875(1), L4 (2019). ArXiv:1906.11241.
K. Akiyama et al., First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring, Astrophys. J. Lett. 875(1), L5 (2019). ArXiv:1906.11242.
K. Akiyama et al., First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole, Astrophys. J. Lett. 875(1), L6 (2019). ArXiv:1906.11243.
J.-P. Luminet, Black holes: A General introduction, Lect. Notes Phys. 514, 3 (1998). ArXiv:astro-ph/9801252.
M. D. Kruskal, Maximal extension of Schwarzschild metric, Phys. Rev. 119, 1743 (1960).
G. Szekeres, On the singularities of a Riemannian manifold, Publicationes Mathematicae Debrecen 7(1-4), 285 (1960).
N. D. Birrell e P. Davies, Quantum fields in curved space (Cambridge university press, 1984).
S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley and Sons, New York, 1972).
R. M. Wald, General Relativity (Chicago Univ. Pr., Chicago, USA, 1984).
M. Gasperini, Theory of Gravitational Interactions, UNITEXT for Physics (Springer International Publishing, Cham, 2017).
S. W. Hawking e G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
S. W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26, 1344 (1971).
J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7, 2333 (1973).
S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975).
S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time, London Mathematical Society Student Texts (Cambridge University Press, 1989).
L. E. Parker e D. Toms, Quantum Field Theory in Curved Spacetime (Cambridge University Press, 2009).
R. M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, Chicago Lectures in Physics (University of Chicago Press, Chicago, IL, 1995).
M. E. Peskin e D. V. Schroeder, An Introduction to quantum field theory (AddisonWesley, Reading, 1995).
M. Srednicki, Quantum field theory (Cambridge University Press, 2007).
M. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, 2014).
W. Rindler, Kruskal space and the uniformly accelerated frame, American Journal of Physics 34(12), 1174 (1966).
P. C. W. Davies, Scalar particle production in Schwarzschild and Rindler metrics, J. Phys. A 8, 609 (1975).
W. G. Unruh e R. M. Wald, What happens when an accelerating observer detects a Rindler particle, Phys. Rev. D 29(6), 1047 (1984).
L. C. B. Crispino, A. Higuchi e G. E. A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80, 787 (2008). ArXiv: 0710.5373.
M. S. Soares et al., Uniformly accelerated quantum counting detector in Minkowski and Fulling vacuum states, Phys. Rev. A 103(4), 042225 (2021). ArXiv:2009.03970.
S. W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14, 2460 (1976).
S. Raju, Lessons from the information paradox, Phys. Rept. 943, 1 (2022). ArXiv: 2012.05770.
W. G. Unruh e R. M. Wald, Information Loss, Rept. Prog. Phys. 80(9), 092002 (2017). ArXiv:1703.02140.
A. Peres e D. R. Terno, Quantum information and relativity theory, Rev. Mod. Phys. 76, 93 (2004). ArXiv:quant-ph/0212023.
L. Susskind, L. Thorlacius e J. Uglum, The Stretched horizon and black hole complementarity, Phys. Rev. D 48, 3743 (1993). ArXiv: hep-th/9306069.
D. N. Page, Information in black hole radiation, Phys. Rev. Lett. 71, 3743 (1993). ArXiv:hep-th/9306083.
D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71, 1291 (1993). ArXiv: gr-qc/9305007.
A. Almheiri et al., Black Holes: Complementarity or Firewalls?, JHEP 02, 062 (2013). ArXiv:1207.3123.
J. Maldacena e L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61, 781 (2013). ArXiv:1306.0533.
S. W. Hawking, M. J. Perry e A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116(23), 231301 (2016). ArXiv:1601.00921.
O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rept. 323, 183 (2000). ArXiv:hep-th/9905111.
J. F. Donoghue, Quantum General Relativity and Effective Field Theory (2022). ArXiv: 2211.09902.
S. Weinberg, Effective field theory, past and future, Int. J. Mod. Phys. A 31(06), 1630007 (2016).
S. Weinberg, On the Development of Effective Field Theory, Eur. Phys. J. H 46(1), 6 (2021). ArXiv:2101.04241.
A. Belenchia et al., Quantum Superposition of Massive Objects and the Quantization of Gravity, Phys. Rev. D 98(12), 126009 (2018). ArXiv:1807.07015.
D. L. Danielson, G. Satishchandran e R. M. Wald, Gravitationally mediated entanglement: Newtonian field versus gravitons, Phys. Rev. D 105(8), 086001 (2022). ArXiv: 2112.10798.
D. N. Page e C. D. Geilker, Indirect Evidence for Quantum Gravity, Phys. Rev. Lett. 47, 979 (1981).
S. Carlip, Is Quantum Gravity Necessary?, Class. Quant. Grav. 25, 154010 (2008). ArXiv:0803.3456.
S. M. Giampaolo e T. Macrì, Entanglement, holonomic constraints, and the quantization of fundamental interactions, Sci. Rep. 9(1), 11362 (2019). ArXiv:1806.08383.
W. D. Goldberger e I. Z. Rothstein, An Effective field theory of gravity for extended objects, Phys. Rev. D 73, 104029 (2006). ArXiv:hep-th/0409156.
G. Menezes e M. Sergola, NLO deflections for spinning particles and Kerr black holes, JHEP 10, 105 (2022). ArXiv:2205.11701.
Z. Bern et al., Spinning black hole binary dynamics, scattering amplitudes, and effective field theory, Phys. Rev. D 104(6), 065014 (2021). ArXiv:2005.03071.
M.-Z. Chung et al., The simplest massive S-matrix: from minimal coupling to Black Holes, JHEP 04, 156 (2019). ArXiv:1812. 08752.
N. Arkani-Hamed, Y.-t. Huang e D. O’Connell, Kerr black holes as elementary particles, JHEP 01, 046 (2020). ArXiv:1906.10100.
A. Guevara, A. Ochirov e J. Vines, Scattering of Spinning Black Holes from Exponentiated Soft Factors, JHEP 09, 056 (2019). ArXiv:1812.06895.
S. Koren, The Hierarchy Problem: From the Fundamentals to the Frontiers, Tese de Doutorado, UC, Santa Barbara (2020). ArXiv: 2009.11870.
C. Barcelo, S. Liberati e M. Visser, Analogue gravity, Living Rev. Rel. 8, 12 (2005). ArXiv:gr-qc/0505065.
D. Faccio et al. (eds.), Analogue Gravity Phenomenology, vol. 870 (Springer International Publishing, 2013).
M. Novello, M. Visser e G. Volovik (eds.), Artificial black holes (World Scientific, 2002).
W. G. Unruh e R. Schützhold (eds.), Quantum Analogues: From Phase Transitions to Black Holes and Cosmology (Springer Berlin, Heidelberg, 2010).
J. Steinhauer, Observation of quantum hawking radiation and its entanglement in an analogue black hole, Nature Physics 12(10), 959 (2016).
J. R. Muñoz de Nova et al., Observation of thermal hawking radiation and its temperature in an analogue black hole, Nature 569(7758), 688 (2019).
V. I. Kolobov et al., Observation of stationary spontaneous hawking radiation and the time evolution of an analogue black hole, Nature Physics 17(3), 362 (2021).
Téléchargements
Publiée
Comment citer
Numéro
Rubrique
Licence
© Matheus S. Soares, Gabriel Menezes 2023
Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .