Pectina de Citrus sinensis como viscosificante en fluidos de perforación poliméricos

Autores

DOI:

https://doi.org/10.21712/lajer.2020.v7.n1.p11-22

Palavras-chave:

orange, pectin, viscosifier, drilling fluid, polymeric.

Resumo

The present investigation was based on the experimental evaluation of the orange-based pectin (Citrus sinensis) as a viscosifier agent in polymeric drilling fluids. To develop the additive, the orange fruit peels were subjected to hydrolysis with citric acid, and then this solution was precipitated with ethanol and the resulting hydrogel was chemically and physically characterized. In the subsequent stage, fluid samples were formulated with xanthan gum and pectin to compare their performance through experimental laboratory procedures governed by API 13-B1. Finally, an Analysis of Variance was applied to determine the means that are significantly different from each other between the commercial product and the one proposed, through the Statgraphics program. In conclusion, it was obtained that pectin showed a statistically similar behavior, although inferior to xanthan gum as a viscosifier additive in polymeric drilling fluids, considering as a variant the expansion of its concentration for fluid rheology optimal development.

Downloads

Não há dados estatísticos.

Biografia do Autor

Steevenson Barreto, Petróleos de Venezuela, S.A. (PDVSA)

Ingeniero de Petróleo de la Universidad de Oriente (UDO), Maturín, estado Monagas, Venezuela y maestrante del Programa de Maestría en Ingeniería de Gas de la misma universidad.  Ingeniero de Optimización de Yacimientos en la Gerencia de Yacimientos, Petróleos de Venezuela S.A. (PDVSA), División Punta de Mata, Venezuela.  Con dos (2) años de experiencia en la industria petrolera venezolana en las áreas de fluidos de perforación y well testing.  Diagramador de la revista científica PetroCiencias.

Luis Castillo Campos, Universidad de Oriente (UDO)

Ingeniero de Petróleo y Magíster Scientiarum en Ciencias Administrativas, Mención Finanzas, ambos títulos de la Universidad de Oriente (UDO), Maturín, estado Monagas, Venezuela.  Docente investigador a dedicación exclusiva  de la Universidad de Oriente, Núcleo de Monagas, con diecisiete (17) años de experiencia.  Con línea de investigación relacionada con el desarrollo de bioinhibidores de incrustación y editor adjunto de la revista científica PetroCiencias de la referida universidad.

Referências

Al-Hameedi, AT, Alkinani, HH, Dunn-Norman, S, Al-Alwani, MA, Alshammari, AF, Albazzaz, HW, Mutar, RA (2019) ‘Insights into the application of new eco-friendly drilling fluid additive to improve the fluid properties in water-based drilling fluid systems’, Journal of Petroleum Science and Engineering, v. 183, pp. 1-10. <https://doi.org/10.1016/j.petrol.2019.106424>.

American Petroleum Institute (API) (2017) API RP 13B-1: Recommended Practice for Field Testing Water-Based Drilling Fluids, and ISO 10414-1, 5th ed. Washington, USA: API Publishing Services.

ASTM International (1998) ASTM E1252-98. Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis. West Conshohocken: ASTM International.

ASTM International (1998) ASTM E1951-98, Standard Guide for Calibrating Reticles and Light Microscope Magnifications. West Conshohocken, PA., U.S.A.: ASTM International.

ASTM International (2002) ASTM D369: Standard Test Method for Specific Gravity of Creosote Fractions and Residue. West Conshohocken, PA: ASTM International.

ASTM International (2002) ASTM E1148-02 Standard Test Method for Measurements of Aqueous Solubility. West Conshohocken, PA.: ASTM International.

ASTM International (2016) ASTM E168, Standard Practices for General Techniques of Infrared Quantitative Analysis. West Conshohocken, PA., U.S.A: ASTM International.

ASTM International (2018) ASTM D2196-18e1, Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational Viscometer. West Conshohocken, PA., U.S.A: ASTM International.

Cerón-Salazar, I y Cardona-Alzate, C (2011) ‘Evaluación del proceso integral para la obtención de aceite esencial y pectina a partir de cáscara de naranja’, Ingeniería y Ciencia, v. 7, n. 13, pp. 65-86.

Chauhan, K, Kumar, R, Kumar, M, Sharma, P y Chauhan, GS (2012) ‘Modified pectin-based polymers as green antiscalants for calcium sulfate scale inhibition’, Desalination, v. 305, pp. 31–37. <http://dx.doi.org/10.1016/j.desal.2012.07.042>.

Chu, Q y Lin, L (2019) ‘Synthesis and properties of an improved agent with restricted viscosity and shearing strength in water-based drilling fluid’, Journal of Petroleum Science and Engineering, v. 173, pp. 1254–1263. <https://doi.org/10.1016/j.petrol.2018.10.074>.

Comisión Venezolana de Normas Industriales (1987) COVENIN 2462-87 Aguas naturales, industriales y residuales. Determinación del pH. Caracas: Fondonorma.

Coultate, T (1998) Manual de química y bioquímica de los alimentos, 2a ed. Zaragoza, España: Acribia.

D´Addosio, R, Páez, G, Marín, M, Mármol, Z y Ferrer, J (2005) ‘Obtención y caracterización de pectina a partir de la cáscara de parchita (Passiflora edulis f. flavicarpa Degener)’, Revista de la Facultad de Agronomía, v. 22, n. 3, pp. 241-251. Disponíble en: <http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-78182005000300004&lng=es&tlng=es> (consultado 25 marzo 2020).

Dairanieh, IS y Lahalih, SM (1988) ‘Novel polymeric drilling mud viscosifiers’, European Polymer Journal, v. 24, n. 9, pp. 831-835. <https://doi.org/10.1016/0014-3057(88)90155-3>.

Dhinesh, B y Annamalai, M (2018) ‘A study on performance, combustion and emission behaviour of diesel engine powered by novel nano nerium oleander biofuel’, Journal of Cleaner Production, v. 196, pp. 74-83. <https://doi.org/10.1016/j.jclepro.2018.06.002>.

Du, H, Wang, G, Deng, G y Cao, C (2018) ‘Modelling the effect of mudstone cuttings on rheological properties of KCl/Polymer water-based drilling fluid’, Journal of Petroleum Science and Engineering, v. 170, pp. 422-429. <https://doi.org/10.1016/j.petrol.2018.06.071>.

Durán, V, Honores, M y Cáceres, P (2012) ‘Obtención de pectina en polvo a partir de la cáscara de maracuyá (Passiflora Edulis)’, Revista Politécnica, pp. 1-4.

ESVENCA (2007 ) Manual básico de fluidos de perforación. Maturín, Venezuela: S.E.

FAO (2019) Food and Agriculture Organization of the United Nations. Food and agriculture data. Disponíble en: <http://www.fao.org/faostat/es/#data/QC> (consultado 11 marzo 2020).

Forero, D y Cristiano, E (2014) Evaluación de la viabilidad del uso de un polimero a base de glicerol como agente viscosificante en lodos de perforación base agua. Trabajo de Pregrado, Universidad Industrial de Santander, Facultad de Ingenierías Fisicoquímicas, Escuela de Ingeniería de Petróleos-Ingeniería Química, Bucaramanga, Colombia.

Gamboa, M (2009) Aprovechamiento de los residuos obtenidos del proceso de despulpado del mango (mangifera indica l.), de las variedades smith, tommy atkins, haden y bocado como materias primas para la obtención de pectinas. Trabajo de Pregrado, Puerto La Cruz, Anzoátegui, Venezuela.

Grunauer , C y Cornejo, F (2009) ‘Influencia del Secado sobre la Captación de Agua de Pectina Extraída a partir del Citrus x Aurantifolia Swingle’, Revista Tecnológica ESPOL, pp. 12-15.

Huo, J-H, Peng, Z-G, Ye, Z-B, Feng, Q, Zheng, Y, Zhang, J y Liu, X (2018). ‘Investigation of synthesized polymer on the rheological and filtration performance of water-based drilling fluid system’, Journal of Petroleum Science and Engineering, v. 165, pp. 655-663. <https://doi.org/10.1016/j.petrol.2018.03.003>.

Jiang, C, Yu, B, Ma, Q, Dong, H, Dong, H, Zhao, H y Tang, Y (2019) ‘Crosslinked polymers as “smart” viscosifiers used in hostile environments’, Journal of Petroleum Science and Engineering, v. 173, pp. 1332–1339. <https://doi.org/10.1016/j.petrol.2018.11.003>.

Jiang, W-X, Qi, J-R, Liao, J-S, Wan, Z-L, Liang, W-L, Huang, J-Y y Yang, X-Q (2020) ‘Structural characterization of pectin-bismuth complexes and their aggregation in acidic conditions’, International Journal of Biological Macromolecules, v. 154, pp. 788-794. <https://doi.org/10.1016/j.ijbiomac.2020.03.143>.

Kaiser, MJ (2009) ‘Modeling the time and cost to drill an offshore well’, Energy, v. 34, n. 9, pp. 1097-1112. <https://doi.org/10.1016/j.energy.2009.02.017>.

Khalil, M y Jan, BM (2012) ‘Herschel-Bulkey rheological parameters of a novel environmentally friendly lightweight biopolymer drilling fluid from xanthan gum and starch’, Journal of Applied Polymer Science, v. 124, n. 1, pp. 595-606. <https://doi.org/10.1002/app.35004>.

Li, MC, Wu, Q, Song, K, Qing, Y y Wu, Y (2015) ‘Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids’, ACS. Applied Material & Interfaces, v. 7, pp. 5006–5016. <https://doi.org/10.1021/acsami.5b00498>.

Livescu, S (2012) ‘Mathematical modeling of thixotropic drilling mud and crude oil flow in wells and pipelines—A review’, Journal of Petroleum Science and Engineering, v. 98, pp. 74-184. <https://doi.org/10.1016/j.petrol.2012.04.026>.

Luqman Hasan, M, Zainol Abidin, NA y Singh, A (2017) ‘The rheological performance of guar gum and castor oil as additives in water-based drilling fluid’, The 3rd International Conference on Green Chemical Engineering Technology, 5, pp.. 21810–21817. Melaka, Malaysia.

Lyu, S, Wang , S, Chen, X, Shah, SM, Li, R, Xiao, Y y. Gu, Y (2019) ‘Experimental study of a degradable polymer drilling fluid system for coalbed methane well’, Journal of Petroleum Science and Engineering, v. 178, pp. 678-690. <https://doi.org/10.1016/j.petrol.2019.03.065>.

Madruga, L, da Câmara, P, Marques, N y Balaban, R (2018) ‘Effect of ionic strength on solution and drilling fluid properties of ionic polysaccharides: A comparative study between Na-carboxymethylcellulose and Na-kappa-carrageenan responses’, Journal of Molecular Liquids, v. 266, pp. 870–879. <https://doi.org/10.1016/j.molliq.2018.07.016>.

Mendoza-Vargas, L, Jiménez-Forero, J y Ramírez-Niño, M (2017) ‘Evaluación de la pectina extraída enzimáticamente a partir de las cáscaras del fruto de cacao (Theobroma cacao L)’, Revista U.D.C.A Actualidad & Divulgación Científica, v. 20, n. 1, pp. 131-138.

Meng, X, Zhang, Y, Zhou, F y Chu, P (2012) ‘Effects of carbon ash on rheological properties of water-based drilling fluids’, Journal of Petroleum Science and Engineering, v. 100, pp. 1-8. <https://doi.org/10.1016/j.petrol.2012.11.011>.

Nascimento, DR, Oliveira, BR, Saide, V, Magalhães, SC, Scheid, CM y Calçada, LA (2019) ‘Effects of particle-size distribution and solid additives in the apparent viscosity of drilling fluids’, Journal of Petroleum Science and Engineering, v. 182, pp. 1-8. <https://doi.org/10.1016/j.petrol.2019.106275>.

Owens, M y McCready, R (1988) ‘Extraction and determination of total pectic materials in fruits’, Analytical Chemistry.

Paredes , J, Hernández , R y Cañizares, A (2015) ‘Efecto del grado de madurez sobre las propiedades fisicoquímicas de pectinas extraídas de cascos de guayaba (Psidium guajava L)’, Idesia (Arica), v. 33, n. 3, pp. 35-41. <https://dx.doi.org/10.4067/S0718-34292015000300006>.

PDVSA CIED (2002) Manual de Fluidos de Perforación. Anzoátegui, Venezuela: Centro Internacional de Educación y Desarrollo (CIED).

Rendón, K, Azocar, E y Castillo-Campos, L (2020) ‘Pectina deshidratada de Passiflora edulis como inhibidor de incrustaciones minerales’, Ingeniería Investigación y Tecnología, v. 21, n. 1, pp. 1-12. <http://dx.doi.org/10.22201/fi.25940732e.2020.21n1.010>.

Santos, EE, Chaves Amaro, R, Cid Bustamante, CC, Andrade Guerra, MH, Catone Soares, L y Santos Froes, RE (2020) ‘Extraction of pectin from agroindustrial residue with an ecofriendly solvent: use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification’, Food Hydrocolloids, v. 107, pp. 1-9. <https://doi.org/10.1016/j.foodhyd.2020.105921>.

Sepehri, S, Soleyman, R, Varamesh, A, Valizadeh, M y Nasiri, A (2018) ‘Effect of synthetic water-soluble polymers on the properties of the heavy water-based drilling fluid at high pressure-high temperature (HPHT) conditions’, Journal of Petroleum Science and Engineering, v. 166, pp. 850-856. <https://doi.org/10.1016/j.petrol.2018.03.055>.

Silveira, A, Scheid, C, Costa, M y Calçada, L (2020) ‘Effect of solid particle size on the filtration properties of suspension viscosified with carboxymethylcellulose and xantham gum’, Journal of Petroleum Science and Engineering, v. 185, pp. 1-11. <https://doi.org/10.1016/j.petrol.2019.106615>.

StatPoint Technologies, Inc (2010) Statgraphics® Centurion XVI (Versión 16.2.04) [Software]. U.S.A.: StatPoint Technologies, Inc.

Talekar, S, Vijayraghavan, R, Arora, A y Patti, AF (2020) ‘Greener production of low methoxyl pectin via recyclable enzymatic de-esterification using pectin methylesterase cross-linked enzyme aggregates captured from citrus peels’, Food Hydrocolloids. <https://doi.org/10.1016/j.foodhyd.2020.105786>.

Temraz , MG y Ibrahim, H (2016) ‘Mineralogy and rheological properties of some Egyptian bentonite for drilling fluids', Journal of Natural Gas Science and Engineering, v. 31, pp. 791-799. <http://dx.doi.org/10.1016/j.jngse.2016.03.072>.

Tovar, AK, Godínez, LA, Espejel, F, Ramírez-Zamora, RM y Robles, I (2019) ‘Optimization of the integral valorization process for orange peel waste using a design of experiments approach: Production of high-quality pectin and activated carbon’, Waste Management, v. 85, pp. 202-213. <https://doi.org/10.1016/j.wasman.2018.12.029>.

Transparency Market Research (2013) Drilling Fluids Market (Oil-Based Fluids, Synthetic-Based Fluids and Water-Based Fluids) for Oil and Gas (Offshore & Onshore) - Global Industry Analysis, Size Share, Growth, Trends and Forecast, 2012-2018. Disponíble en: <http://www.transparencymarketresearch.com/drillingfluid-market.html> (consultado 30 enero 2020)

Vega, R, Barreto, P y Coronado, M (2016) ‘Uso de la pectina como agente viscosificante en un fluido de perforación base agua polimérico’, Ingeniería Petrolera, v. 56, n. 7, pp. 375-386. Disponíble en: <https://biblat.unam.mx/es/revista/ingenieria-petrolera/articulo/uso-de-la-pectina-como-agente-viscosificante-en-un-fluido-de-perforacion-base-agua-polimerico>.

Villada, Y, Gallardo, F, Erdmann, E, Casis, N y Olivares, L (2017) ‘Functional characterization on colloidal suspensions containing xanthan gum (XGD) and polyanionic cellulose (PAC) used in drilling fluids for a shale formation’, Applied Clay Science, v. 149, pp. 59-66. <http://dx.doi.org/10.1016/j.clay.2017.08.020>.

Wan, T, Yao, J, Zishun, S, Li, W y Juan, W (2011) ‘Solution and drilling fluid properties of water soluble AM–AA–SSS copolymers by inverse microemulsion’, Journal of Petroleum Science and Engineering, v. 78, p. 334–337. <https://doi.org/10.1016/j.petrol.2011.06.027>.

Wang, W, Ma, X, Xu, Y, Cao, Y, Jiang, Z, Ding, T y Liu, D (2015) ‘Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method’, Food Chemistry, v. 178, 106–114. <https://doi.org/10.1016/j>.

Weiss, E (1997) Essential oil crops. Wallingford, United Kingdom: CAB International.

Xie, B y Liu, X (2017) ‘Thermo-thickening behavior of LCST-based copolymer viscosifier for water-based drilling fluids’, Journal of Petroleum Science and Engineering, v. 154, pp. 244–251. <http://dx.doi.org/10.1016/j.petrol.2017.04.037>.

Xie, B, Ting, L, Zhang, Y e Liu, C (2018) ‘Rheological properties of bentonite-free water-based drilling fluids with novel polymer viscosifier’, Journal of Petroleum Science and Engineering, v. 164, pp. 302-310. <https://doi.org/10.1016/j.petrol.2018.01.074>.

Yan, L, Wang, C, Xu, B, Sun, J, Yue, W y Yang, Z (2013) ‘Preparation of a novel amphiphilic comb-like terpolymer as viscosifying additive in low-solid drilling fluid’, Materials Letters, v. 105, pp. 232–235. <http://dx.doi.org/10.1016/j.matlet.2013.04.025>.

Yapo, BM, Robert, C, Etienne, I, Wathelet, B y Paquot, M (2007) ‘Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts’, Food Chemistry, v. 100, pp. 1356–1364. <https://doi.org/10.1016/j.foodchem.2005.12.012>.

Zoveidavianpoor, M y Samsuri, A (2016) ‘The use of nano-sized Tapioca starch as a natural water-soluble polymer for filtration control in water-based drilling muds’, Journal of Natural Gas Science and Engineering, v. 34, pp. 832-840. <http://dx.doi.org/10.1016/j.jngse.2016.07.048>.

Publicado

05-02-2021

Como Citar

Barreto, S. ., & Castillo Campos, L. (2021). Pectina de Citrus sinensis como viscosificante en fluidos de perforación poliméricos. Latin American Journal of Energy Research, 7(1), 11–22. https://doi.org/10.21712/lajer.2020.v7.n1.p11-22

Edição

Seção

Artigos