Avanços e limitações da produção, armazenamento e transporte de hidrogênio verde

Autores

  • Mariana dos Santos Puga Universidade Federal de São Paulo
  • Yvan Jesus Olortiga Asencios Professor do Instituto do Mar, Universidade Federal de São Paulo– UNIFESP

DOI:

https://doi.org/10.21712/lajer.2023.v10.n2.p74-93

Palavras-chave:

Hidrogênio verde, Hidrogênio renovável, Energia, Sustentabilidade, Tecnologia

Resumo

A busca por fontes limpas de energia e produção é um dos principais objetivos de países do mundo todo para a descarbonização da economia. Atualmente, diversas soluções estão sendo desenvolvidas para os problemas ambientais, sociais e econômicos relacionados às emissões dos gases de efeito estufa. O hidrogênio verde apresenta-se como uma das tecnologias promissoras para atender as demandas energéticas e de processos produtivos de diversos setores da economia. O hidrogênio é o elemento químico mais abundante da superfície terrestre e encontra-se normalmente associado a compostos orgânicos como hidrocarbonetos, além disso se encontra formando as moléculas de água. Entretanto, para obtê-lo de maneira isolada é necessário extraí-lo de fontes como água, petróleo, gás natural, biogás, entre outras. O hidrogênio verde é aquele produzido a partir da eletrólise da água com energia oriunda de fontes renováveis. Ainda existem alguns desafios a serem superados para efetivamente atender as demandas das indústrias de produção de fertilizantes, petrolíferas, metalúrgicas e abastecimento de energia elétrica. Sendo assim, este trabalho aborda os avanços e as limitações para produção, armazenamento e transporte de hidrogênio verde, bem como, a produção científica através de uma revisão sistemática de literatura. Para a produção, o custo de energia renovável foi relevante, considerando apenas energia fotovoltaica/compra. O mapeamento de outras opções pode tornar a análise abrangente. A eletrólise da água está associada a maturidade da tecnologia e o custo dos eletrolisadores, compostos por metais de alto valor agregado. Assim, é necessário o desenvolvimento de novos materiais. Em relação ao armazenamento, a viabilidade tecno econômica da operação é onerosa. Tecnologias que possam superar estes desafios podem otimizar a cadeia de suprimentos. Diversos estudos consideraram o uso da malha de dutos existente para o transporte. Entretanto, como países estão sendo considerados potenciais pólos de exportação, esperava-se encontrar artigos que abordassem o transporte para longas distâncias.

Downloads

Não há dados estatísticos.

Biografia do Autor

Yvan Jesus Olortiga Asencios, Professor do Instituto do Mar, Universidade Federal de São Paulo– UNIFESP

Professor do Instituto do Mar, Universidade Federal de São Paulo– UNIFESP

Referências

Abe, JO, Popoola, API, Ajenifuja, E and Popoola, OM (2019) ‘Hydrogen energy, economy and storage: Review and recommendation’, In International Journal of Hydrogen Energy (Vol. 44, Issue 29). https://doi.org/10.1016/j.ijhydene.2019.04.068 DOI: https://doi.org/10.1016/j.ijhydene.2019.04.068

Agbossou, K, Adzakpa, KP and Anouar, A (2007) ‘Renewable hydrogen production and distribution options for fuel cells use’, SAE Technical Papers. https://doi.org/10.4271/2007-01-0014 DOI: https://doi.org/10.4271/2007-01-0014

Andersson, J. and Grönkvist, S. (2019). Large-scale storage of hydrogen. In International Journal of Hydrogen Energy (Vol. 44, Issue 23). https://doi.org/10.1016/j.ijhydene.2019.03.063 DOI: https://doi.org/10.1016/j.ijhydene.2019.03.063

Bhaskar, A., Assadi, M., & Somehsaraei, H. N. (2020). Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen. Energies, 13(3). https://doi.org/10.3390/en13030758 DOI: https://doi.org/10.3390/en13030758

Burdack, A., Duarte-Herrera, L., López-Jiménez, G., Polklas, T. and Vasco-Echeverri, O. (2023). Techno-economic calculation of green hydrogen production and export from Colombia. International Journal of Hydrogen Energy, 48(5). https://doi.org/10.1016/j.ijhydene.2022.10.064 DOI: https://doi.org/10.1016/j.ijhydene.2022.10.064

Cardella, U., Decker, L. and Klein, H. (2017). Roadmap to economically viable hydrogen liquefaction. International Journal of Hydrogen Energy, 42(19). https://doi.org/10.1016/j.ijhydene.2017.01.068 DOI: https://doi.org/10.1016/j.ijhydene.2017.01.068

Climate Watch. (2020). World Greenhouse Gas Emissions in 2016. World.

Fahim, M. A., Alsahhaf, T. A. and Elkilani, A. (2010). Fundamentals of Petroleum Refining. In Fundamentals of Petroleum Refining. https://doi.org/10.1016/C2009-0-16348-1 DOI: https://doi.org/10.1016/C2009-0-16348-1

Ferriday, T. B. and Middleton, P. H. (2021). Alkaline fuel cell technology - A review. In International Journal of Hydrogen Energy (Vol. 46, Issue 35). https://doi.org/10.1016/j.ijhydene.2021.02.203 DOI: https://doi.org/10.1016/j.ijhydene.2021.02.203

Ficco, G., Arpino, F., Dell’Isola, M., Grimaldi, M. and Lisi, S. (2022). Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy. Energies, 15(21). https://doi.org/10.3390/en15218072 DOI: https://doi.org/10.3390/en15218072

Gerboni, R. (2016). Introduction to hydrogen transportation. In Compendium of Hydrogen Energy. https://doi.org/10.1016/b978-1-78242-362-1.00011-0 DOI: https://doi.org/10.1016/B978-1-78242-362-1.00011-0

Germscheidt, R. L., Moreira, D. E. B., Yoshimura, R. G., Gasbarro, N. P., Datti, E., dos Santos, P. L. and Bonacin, J. A. (2021). Hydrogen Environmental Benefits Depend on the Way of Production: An Overview of the Main Processes Production and Challenges by 2050. Advanced Energy and Sustainability Research, 2(10). https://doi.org/10.1002/aesr.202100093 DOI: https://doi.org/10.1002/aesr.202170025

Heywood, J. B., Weiss, M. A., Schafer, A., Bassene, S. A. and Natarajan, V. K. (2004). The performance of future ICE and fuel cell powered vehicles and their potential fleet impact. SAE Technical Papers. https://doi.org/10.4271/2004-01-1011 DOI: https://doi.org/10.4271/2004-01-1011

Hord, J. (1978). Is hydrogen a safe fuel? International Journal of Hydrogen Energy, 3(2). https://doi.org/10.1016/0360-3199(78)90016-2 DOI: https://doi.org/10.1016/0360-3199(78)90016-2

Hren, R., Vujanović, A., Van Fan, Y., Klemeš, J. J., Krajnc, D. and Čuček, L. (2023). Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renewable and Sustainable Energy Reviews, 173. https://doi.org/10.1016/j.rser.2022.113113 DOI: https://doi.org/10.1016/j.rser.2022.113113

International Energy Agency. (2021). Global Hydrogen Review 2021 – Analysis - IEA. Global Hydrogen Review.

IRENA. (2020). Green Hydrogen Cost Reduction. In /publications/2020/Dec/Green-hydrogen-cost-reduction.

Ji, X., Zhou, B., He, G., Qiu, Y., Bi, K., Zhou, L. and Dai, Y. (2022). Research Review of the Key Technology and Application of Large-scale Water Electrolysis Powered by Renewable Energy to Hydrogen and Ammonia Production. In Gongcheng Kexue Yu Jishu/Advanced Engineering Science (Vol. 54, Issue 5). https://doi.org/10.15961/j.jsuese.202200660

Kelman, R., Gaspar, L. de S., Geyer, F. S., Barroso, L. A. N. and Pereira, M. V. F. (2020). Can Brazil Become a Green Hydrogen Powerhouse? Journal of Power and Energy Engineering, 08(11). https://doi.org/10.4236/jpee.2020.811003 DOI: https://doi.org/10.4236/jpee.2020.811003

Kuang, Y., Kenney, M. J., Meng, Y., Hung, W. H., Liu, Y., Huang, J. E., Prasanna, R., Li, P., Li, Y., Wang, L., Lin, M. C., McGehee, M. D., Sun, X. and Dai, H. (2019). Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 116(14). https://doi.org/10.1073/pnas.1900556116 DOI: https://doi.org/10.1073/pnas.1900556116

Larin, N., Zgonnik, V., Rodina, S., Deville, E., Prinzhofer, A. and Larin, V. N. (2015). Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia. Natural Resources Research, 24(3). https://doi.org/10.1007/s11053-014-9257-5 DOI: https://doi.org/10.1007/s11053-014-9257-5

Lee, H., Choe, B., Lee, B., Gu, J., Cho, H. S., Won, W. and Lim, H. (2022). Outlook of industrial-scale green hydrogen production via a hybrid system of alkaline water electrolysis and energy storage system based on seasonal solar radiation. Journal of Cleaner Production, 377. https://doi.org/10.1016/j.jclepro.2022.134210 DOI: https://doi.org/10.1016/j.jclepro.2022.134210

Liang, Y., Pan, X., Zhang, C., Xie, B. and Liu, S. (2019). The simulation and analysis of leakage and explosion at a renewable hydrogen refuelling station. International Journal of Hydrogen Energy, 44(40). https://doi.org/10.1016/j.ijhydene.2019.05.140 DOI: https://doi.org/10.1016/j.ijhydene.2019.05.140

Ma, Y., Wang, X. R., Li, T., Zhang, J., Gao, J. and Sun, Z. Y. (2021). Hydrogen and ethanol: Production, storage, and transportation. In International Journal of Hydrogen Energy (Vol. 46, Issue 54). https://doi.org/10.1016/j.ijhydene.2021.06.027 DOI: https://doi.org/10.1016/j.ijhydene.2021.06.027

Mao, X., Ying, R., Yuan, Y., Li, F. and Shen, B. (2021). Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship. International Journal of Hydrogen Energy, 46(9). https://doi.org/10.1016/j.ijhydene.2020.11.158 DOI: https://doi.org/10.1016/j.ijhydene.2020.11.158

Masip Macía, Y., Rodríguez Machuca, P., Rodríguez Soto, A. A. and Carmona Campos, R. (2021). Green hydrogen value chain in the sustainability for port operations: Case study in the region of valparaiso, Chile. Sustainability (Switzerland), 13(24). https://doi.org/10.3390/su132413681 DOI: https://doi.org/10.3390/su132413681

Menon, N. V. and Siew Hwa, C. (2022). Hydrogen as a Source of Green Energy for Marine Applications. 2022 6th International Conference on Green Energy and Applications, ICGEA 2022. https://doi.org/10.1109/ICGEA54406.2022.9791898 DOI: https://doi.org/10.1109/ICGEA54406.2022.9791898

Moretti, I., Brouilly, E., Loiseau, K., Prinzhofer, A. and Deville, E. (2021). Hydrogen emanations in intracratonic areas: New guide lines for early exploration basin screening. Geosciences (Switzerland), 11(3). https://doi.org/10.3390/geosciences11030145 DOI: https://doi.org/10.3390/geosciences11030145

Mouli-Castillo, J., Orr, G., Thomas, J., Hardy, N., Crowther, M., Haszeldine, R. S., Wheeldon, M. and McIntosh, A. (2021). A comparative study of odorants for gas escape detection of natural gas and hydrogen. International Journal of Hydrogen Energy, 46(27). https://doi.org/10.1016/j.ijhydene.2021.01.211 DOI: https://doi.org/10.1016/j.ijhydene.2021.01.211

Oliveira, A. M., Beswick, R. R. and Yan, Y. (2021). A green hydrogen economy for a renewable energy society. In Current Opinion in Chemical Engineering (Vol. 33). https://doi.org/10.1016/j.coche.2021.100701 DOI: https://doi.org/10.1016/j.coche.2021.100701

Ordin, P. (1997). Safety Standard for Hydrogen and Hydrogen Systems, l. National Aeronautics and Space Administration, NSS. https://doi.org/NSS 1740.16

Prachi R., P., Mahesh M., W. and Aneesh C., G. (2016). A Review on Solid State Hydrogen Storage Material. Advances in Energy and Power, 4(2). https://doi.org/10.13189/aep.2016.040202 DOI: https://doi.org/10.13189/aep.2016.040202

Prinzhofer, A., Moretti, I., Françolin, J., Pacheco, C., D’Agostino, A., Werly, J. and Rupin, F. (2019). Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H 2 -emitting structure. International Journal of Hydrogen Energy, 44(12). https://doi.org/10.1016/j.ijhydene.2019.01.119 DOI: https://doi.org/10.1016/j.ijhydene.2019.01.119

Ranzani Da Costa, A., Wagner, D. and Patisson, F. (2013). Modelling a new, low CO2 emissions, hydrogen steelmaking process. Journal of Cleaner Production, 46. https://doi.org/10.1016/j.jclepro.2012.07.045 DOI: https://doi.org/10.1016/j.jclepro.2012.07.045

Robert F. Service. (2023). Splitting seawater could provide an endless source of green hydrogen. American Association for the Advancement of Science, 1075–1075. DOI: https://doi.org/10.1126/science.adh7973

Sammes, N., Bove, R. and Stahl, K. (2004). Phosphoric acid fuel cells: Fundamentals and applications. Current Opinion in Solid State and Materials Science, 8(5). https://doi.org/10.1016/j.cossms.2005.01.001 DOI: https://doi.org/10.1016/j.cossms.2005.01.001

Sgarbossa, F., Arena, S., Tang, O. and Peron, M. (2023). Renewable hydrogen supply chains: A planning matrix and an agenda for future research. International Journal of Production Economics, 255. https://doi.org/10.1016/j.ijpe.2022.108674 DOI: https://doi.org/10.1016/j.ijpe.2022.108674

Sheldon, D. (2017). Methanol production - A technical history. In Johnson Matthey Technology Review (Vol. 61, Issue 3). https://doi.org/10.1595/205651317X695622 DOI: https://doi.org/10.1595/205651317X695622

Sherif, S. A., Goswami, D. Y., Stefanakos, E. K. and Steinfeld, A. (2014). Handbook of hydrogen energy. In Handbook of Hydrogen Energy. https://doi.org/10.1201/b17226 DOI: https://doi.org/10.1201/b17226

Shiva Kumar, S., & Lim, H. (2022). An overview of water electrolysis technologies for green hydrogen production. In Energy Reports (Vol. 8). https://doi.org/10.1016/j.egyr.2022.10.127 DOI: https://doi.org/10.1016/j.egyr.2022.10.127

Singla, M. K., Nijhawan, P. and Oberoi, A. S. (2021). Hydrogen fuel and fuel cell technology for cleaner future: a review. In Environmental Science and Pollution Research (Vol. 28, Issue 13). https://doi.org/10.1007/s11356-020-12231-8 DOI: https://doi.org/10.1007/s11356-020-12231-8

Soloveichik, G. (2019). Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. In Nature Catalysis (Vol. 2, Issue 5). https://doi.org/10.1038/s41929-019-0280-0 DOI: https://doi.org/10.1038/s41929-019-0280-0

Stöckl, F., Schill, W. P. and Zerrahn, A. (2021). Optimal supply chains and power sector benefits of green hydrogen. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-92511-6 DOI: https://doi.org/10.1038/s41598-021-92511-6

Tomczyk, P. (2006). MCFC versus other fuel cells-Characteristics, technologies and prospects. Journal of Power Sources, 160(2 SPEC. ISS.). https://doi.org/10.1016/j.jpowsour.2006.04.071 DOI: https://doi.org/10.1016/j.jpowsour.2006.04.071

Valenti, G. (2016). Hydrogen liquefaction and liquid hydrogen storage. In Compendium of Hydrogen Energy. https://doi.org/10.1016/b978-1-78242-362-1.00002-x DOI: https://doi.org/10.1016/B978-1-78242-362-1.00002-X

Verhelst, S. (2014). Recent progress in the use of hydrogen as a fuel for internal combustion engines. In International Journal of Hydrogen Energy (Vol. 39, Issue 2). https://doi.org/10.1016/j.ijhydene.2013.10.102 DOI: https://doi.org/10.1016/j.ijhydene.2013.10.102

Villalba-Herreros, A., d’Amore-Domenech, R., Crucelaegui, A. and Leo, T. J. (2023). Techno-Economic Assessment of Large-Scale Green Hydrogen Logistics Using Ammonia As Hydrogen Carrier: Comparison to Liquified Hydrogen Distribution and In Situ Production. ACS Sustainable Chemistry & Engineering. https://doi.org/10.1021/acssuschemeng.2c07136 DOI: https://doi.org/10.1021/acssuschemeng.2c07136

Wang, Y., Ruiz Diaz, D. F., Chen, K. S., Wang, Z. and Adroher, X. C. (2020). Materials, technological status, and fundamentals of PEM fuel cells – A review. In Materials Today (Vol. 32). https://doi.org/10.1016/j.mattod.2019.06.005 DOI: https://doi.org/10.1016/j.mattod.2019.06.005

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. and Wesslén, A. (2012). Experimentation in software engineering. In Experimentation in Software Engineering (Vol. 9783642290442). https://doi.org/10.1007/978-3-642-29044-2 DOI: https://doi.org/10.1007/978-3-642-29044-2

Yamamoto, O. (2000). Solid oxide fuel cells: Fundamental aspects and prospects. Electrochimica Acta, 45(15–16). https://doi.org/10.1016/S0013-4686(00)00330-3 DOI: https://doi.org/10.1016/S0013-4686(00)00330-3

Yu, L., Zhu, Q., Song, S., McElhenny, B., Wang, D., Wu, C., Qin, Z., Bao, J., Yu, Y., Chen, S. and Ren, Z. (2019). Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13092-7 DOI: https://doi.org/10.1038/s41467-019-13092-7

Zgonnik, V. (2020). The occurrence and geoscience of natural hydrogen: A comprehensive review. In Earth-Science Reviews (Vol. 203). https://doi.org/10.1016/j.earscirev.2020.103140 DOI: https://doi.org/10.1016/j.earscirev.2020.103140

Zgonnik, V., Beaumont, V., Deville, E., Larin, N., Pillot, D. and Farrell, K. M. (2015). Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA). Progress in Earth and Planetary Science, 2(1). https://doi.org/10.1186/s40645-015-0062-5 DOI: https://doi.org/10.1186/s40645-015-0062-5

Zhang, L., Chae, S. R., Hendren, Z., Park, J. S. and Wiesner, M. R. (2012). Recent advances in proton exchange membranes for fuel cell applications. In Chemical Engineering Journal (Vols. 204–205). https://doi.org/10.1016/j.cej.2012.07.103 DOI: https://doi.org/10.1016/j.cej.2012.07.103

Downloads

Publicado

28-12-2023

Como Citar

dos Santos Puga, M., & Olortiga Asencios, Y. J. (2023). Avanços e limitações da produção, armazenamento e transporte de hidrogênio verde. Latin American Journal of Energy Research, 10(2), 74–93. https://doi.org/10.21712/lajer.2023.v10.n2.p74-93

Edição

Seção

Energias de Baixo Carbono