A comparative study of different battery geometries used in electric vehicles

Autores

  • Diego Nieto Hummes
  • Julian Hunt
  • Bruno Barcellos Hervé
  • Paulo Smith Schneider
  • Pedro Marin Montanari

DOI:

https://doi.org/10.21712/lajer.2023.v10.n2.p94-114

Palavras-chave:

Multi-Attribute Utility Theory, Battery geometry, Electric vehicle

Resumo

Este artigo contribui com uma revisão das geometrias atuais e futuras das baterias de veículos elétricos, uma vez que há poucas comparações em relação aos critérios de desempenho na literatura. Com essas considerações, este artigo busca preencher essa lacuna comparando baterias comerciais com diferentes geometrias. Primeiramente, são apresentadas as especificações de cada bateria (encontradas nos sites dos fabricantes ou em mídias especializadas). Em seguida, os critérios de avaliação das baterias são definidos considerando duas aplicações distintas: carros econômicos e de alto desempenho, utilizando o método Teoria da Utilidade Multi-Atributo (MAUT). A partir dessa análise, a bateria de lâmina apresentou o melhor desempenho geral, com uma boa classificação para ambas as aplicações. A geometria cilíndrica veio em seguida, com uma classificação mais adequada para veículos de alto desempenho, e a geometria em forma de bolsa mostrou promessa para uso em veículos voltados principalmente para a economia. Por fim, é realizado um estudo de caso avaliando a aplicação de cada uma das baterias em um veículo comercial. Concluiu-se que, quando comparadas com as novas tecnologias, o potencial de melhoria em qualquer um dos critérios estudados é enorme. Em particular, a bateria de bolsa Licerion (Sion) apresentou o melhor desempenho em relação à autonomia e à relação capacidade-peso, enquanto a bateria cilíndrica 4680 (Panasonic) e a bateria de lâmina (BYD) foram superiores em relação à relação capacidade-volume e à relação capacidade-custo, respectivamente.

Downloads

Não há dados estatísticos.

Referências

-Kelley-Blue-Book-Electrified-Vehicle-Sales-Report.pdf. [online] Available at: https://www.coxautoinc.com/wp-content/uploads/2022/10/Q3-2022-Kelley-Blue-Book-Electrified-Vehicle-Sales-Report.pdf [Accessed 15 January 2023].

Tesla Model Y 4680 - Battery Design. [online] Available at: https://www.batterydesign.net/2022-tesla-model-y-4680/ [Accessed 26 October 2022].

A Closer Look at the ‘Blade Battery’ That Tesla Will Reportedly Use for its $25,000 EV - FutureCar.com - via @FutureCar_Media. [online] Available at: https://www.futurecar.com/4794/A-Closer-Look-at-the-Blade-Battery-That-Tesla-Will-Reportedly-Use-for-its-$25000-EV [Accessed 13 January 2022].

Automotive Battery - Battery Cells & Battery System | Samsung SDI. [online] Available at: https://www.samsungsdi.com/automotive-battery/products/prismatic-lithium-ion-battery-cell.html [Accessed 1 June 2022].

Automotive Battery - Partnership | Samsung SDI. [online] Available at: https://www.samsungsdi.com/automotive-battery/partnership.html [Accessed 1 June 2022].

Avdeev, I. and Gilaki, M., 2014. Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact. Journal of Power Sources, 271, pp.382–391. https://doi.org/10.1016/j.jpowsour.2014.08.014. DOI: https://doi.org/10.1016/j.jpowsour.2014.08.014

Bankole, O.E., Gong, C. and Lei, L., 2013. Battery Recycling Technologies: Recycling Waste Lithium Ion Batteries with the Impact on the Environment In-View. Journal of Environment and Ecology, 4(1), p.14. https://doi.org/10.5296/jee.v4i1.3257. DOI: https://doi.org/10.5296/jee.v4i1.3257

Barbosa Coelho, N., Meneguelo, A.P. and De Lorena Diniz Chaves, G., 2022. Captura e armazenamento de carbono associados à recuperação avançada de óleo: uma revisão. Latin American Journal of Energy Research, 9(2), pp.18–35. https://doi.org/10.21712/lajer.2022.v9.n2.p18-35. DOI: https://doi.org/10.21712/lajer.2022.v9.n2.p18-35

Bartu Castilho Viana, G. and Jesús Olortiga Asencios, Y., 2022. Aplicação do modelo DPSIR (Drivers – Pressures – State – Impact – Response) com foco nas respostas tecnológicas para a redução dos gases de efeito estufa. Latin American Journal of Energy Research, 9(1), pp.49–68. https://doi.org/10.21712/lajer.2022.v9.n1.p49-68. DOI: https://doi.org/10.21712/lajer.2022.v9.n1.p49-68

Ben Ammar, F., Hafsa, I.H. and Hammami, F., 2013. Analytic Hierarchy process selection for batteries storage technologies. In: 2013 International Conference on Electrical Engineering and Software Applications. [online] 2013 International Conference On Electrical Engineering and Software Applications (ICEESA). Hammamet, Tunisia: IEEE. pp.1–6. https://doi.org/10.1109/ICEESA.2013.6578374. DOI: https://doi.org/10.1109/ICEESA.2013.6578374

Borrás, J., 2021. New 4680 Tesla Batteries vs. Solid State Batteries. [online] CleanTechnica. Available at: https://cleantechnica.com/2021/11/01/new-4680-tesla-batteries-vs-solid-state-batteries/ [Accessed 8 December 2021].

BU-301a: Types of Battery Cells. [online] Battery University. Available at: https://batteryuniversity.com/article/bu-301a-types-of-battery-cells [Accessed 7 October 2021].

Burd, J.T.J., Moore, E.A., Ezzat, H., Kirchain, R. and Roth, R., 2021. Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions. Applied Energy, 283, p.116269. https://doi.org/10.1016/j.apenergy.2020.116269. DOI: https://doi.org/10.1016/j.apenergy.2020.116269

BYD Blade Battery Now Entering The European Market. [online] InsideEVs. Available at: https://insideevs.com/news/495023/byd-blade-battery-entering-european-market/ [Accessed 12 January 2022].

Cai, W., 2016. LITHIUM-ION BATTERY MANUFACTURING FOR ELECTRIC VEHICLES: A CONTEMPORARY OVERVIEW. In: Advances in Battery Manufacturing, Service, and Management Systems. [online] John Wiley & Sons, Ltd. pp.1–28. https://doi.org/10.1002/9781119060741.ch1. DOI: https://doi.org/10.1002/9781119060741.ch1

Carlstedt, D. and Asp, L.E., 2020. Performance analysis framework for structural battery composites in electric vehicles. Composites Part B: Engineering, 186, p.107822. https://doi.org/10.1016/j.compositesb.2020.107822. DOI: https://doi.org/10.1016/j.compositesb.2020.107822

Chien, Y.-H., Hsieh, I.-Y.L. and Chang, T.-H., 2023. Beyond personal vehicles: How electrifying scooters will help achieve climate mitigation goals in Taiwan. Energy Strategy Reviews, 45, p.101056. https://doi.org/10.1016/j.esr.2023.101056. DOI: https://doi.org/10.1016/j.esr.2023.101056

Company Brochure 21B, Sion Power. [online] Available at: https://sionpower.com/company-brochure-21b-2/ [Accessed 14 August 2022].

Cristina De Araujo, G., Antonio Cruz Siqueira, J., Zanardini, L., Felipe Peixoto Marques, J., Lazzarin, R. and Julio Sakata, A., 2022. Different forms of hydrogen production: a review and future perspectives. Latin American Journal of Energy Research, 8(2), pp.49–58. https://doi.org/10.21712/lajer.2021.v8.n2.p49-58. DOI: https://doi.org/10.21712/lajer.2021.v8.n2.p49-58

Danzi, F., Camanho, P.P. and Braga, M.H., 2021. An All-Solid-State Coaxial Structural Battery Using Sodium-Based Electrolyte. Molecules, 26(17), p.5226. https://doi.org/10.3390/molecules26175226. DOI: https://doi.org/10.3390/molecules26175226

Das, A., Li, D., Williams, D. and Greenwood, D., 2018. Joining Technologies for Automotive Battery Systems Manufacturing. World Electric Vehicle Journal, 9(2), p.22. https://doi.org/10.3390/wevj9020022. DOI: https://doi.org/10.3390/wevj9020022

Dionisi, F., Harnden, R. and Zenkert, D., 2017. A model to analyse deformations and stresses in structural batteries due to electrode expansions. Composite Structures, 179, pp.580–589. https://doi.org/10.1016/j.compstruct.2017.07.029. DOI: https://doi.org/10.1016/j.compstruct.2017.07.029

Fotouhi, A., Auger, D.J., Propp, K., Longo, S. and Wild, M., 2016. A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur. Renewable and Sustainable Energy Reviews, 56, pp.1008–1021. https://doi.org/10.1016/j.rser.2015.12.009. DOI: https://doi.org/10.1016/j.rser.2015.12.009

Gasparini Croce, R., Dariva, A., Pereira Trarbach, E. and Arthur Firmino Monhol, F., 2020. Avaliação da eficiência na geração de energia elétrica de um motor híbrido (combustão + ar comprimido) a partir de testes em protótipo real. Latin American Journal of Energy Research, 7(1), pp.34–45. https://doi.org/10.21712/lajer.2020.v7.n1.p34-45. DOI: https://doi.org/10.21712/lajer.2020.v7.n1.p34-45

Hamed, M.M., El-Tayeb, A., Moukhtar, I., El Dein, A.Z. and Abdelhameed, E.H., 2022. A review on recent key technologies of lithium-ion battery thermal management: External cooling systems. Results in Engineering, 16, p.100703. https://doi.org/10.1016/j.rineng.2022.100703. DOI: https://doi.org/10.1016/j.rineng.2022.100703

Jeon, D.H. and Baek, S.M., 2011. Thermal modeling of cylindrical lithium ion battery during discharge cycle. Energy Conversion and Management, 52(8–9), pp.2973–2981. https://doi.org/10.1016/j.enconman.2011.04.013. DOI: https://doi.org/10.1016/j.enconman.2011.04.013

Jiang, Y., Xu, J., Hou, W. and Mei, X., 2021. A stack pressure based equivalent mechanical model of lithium-ion pouch batteries. Energy, 221, p.119804. https://doi.org/10.1016/j.energy.2021.119804. DOI: https://doi.org/10.1016/j.energy.2021.119804

Kester, J., Sovacool, B.K., Zarazua de Rubens, G. and Noel, L., 2020. Novel or normal? Electric vehicles and the dialectic transition of Nordic automobility. Energy Research & Social Science, 69, p.101642. https://doi.org/10.1016/j.erss.2020.101642. DOI: https://doi.org/10.1016/j.erss.2020.101642

Laserax, 2022. Prismatic Cells vs. Cylindrical Cells: What is the Difference? [online] Laserax. Available at: <https://www.laserax.com/blog/prismatic-vs-cylindrical-cells> [Accessed 16 June 2022].

Li, Z., Khajepour, A. and Song, J., 2019. A comprehensive review of the key technologies for pure electric vehicles. Energy, 182, pp.824–839. https://doi.org/10.1016/j.energy.2019.06.077. DOI: https://doi.org/10.1016/j.energy.2019.06.077

Lima, P., 2021a. Samsung SDI is already producing high-nickel content battery cells - 🔋PushEVs. [online] Available at: https://pushevs.com/2021/06/09/samsung-sdi-is-already-producing-high-nickel-content-battery-cells/ [Accessed 1 June 2022].

Lima, P., 2021b. This is why BYD Blade battery is ahead of competition - 🔋PushEVs. [online] Available at: https://pushevs.com/2021/08/10/this-is-why-byd-blade-battery-is-ahead-of-competition/ [Accessed 13 January 2022].

Liu, H., Wei, Z., He, W. and Zhao, J., 2017. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management, 150, pp.304–330. https://doi.org/10.1016/j.enconman.2017.08.016. DOI: https://doi.org/10.1016/j.enconman.2017.08.016

Mahmud, S., Rahman, M., Kamruzzaman, M., Ali, M.O., Emon, M.S.A., Khatun, H. and Ali, M.R., 2022. Recent advances in lithium-ion battery materials for improved electrochemical performance: A review. Results in Engineering, 15, p.100472. https://doi.org/10.1016/j.rineng.2022.100472. DOI: https://doi.org/10.1016/j.rineng.2022.100472

Mauler, L., Duffner, F., Zeier, W.G. and Leker, J., 2021. Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy & Environmental Science, 14(9), pp.4712–4739. https://doi.org/10.1039/D1EE01530C. DOI: https://doi.org/10.1039/D1EE01530C

Morris, C., 2021. GM reveals more technical details of its Ultium battery packs. [online] Charged EVs. Available at: https://chargedevs.com/newswire/gm-reveals-more-technical-details-of-its-ultium-battery-packs/ [Accessed 26 October 2022].

Nast, C., 2020. Fiat New 500 review: smart pricing makes it a rival for all urban EVs. Wired UK. [online] Available at: https://www.wired.co.uk/article/fiat-500e-review [Accessed 1 June 2022].

Natarajan, B., 2021. Everything you should know about the BYD Blade Battery. Available at: https://electricvehicleweb.com/byd-blade-shaped-battery-breakthrough-battery-safety/ [Accessed 19 January 2022].

Nathan, S., 2018. Carbon fibre can act as a structural battery component in vehicle bodies. The Engineer. Available at: https://www.theengineer.co.uk/carbon-fibre-structural-battery/ [Accessed 26 January 2022].

Park, S.H., Park, J., Ryou, M.-H. and Lee, Y.M., 2020. Sensitivity of power of lithium-ion batteries to temperature: A case study using cylindrical- and pouch-type cells. Journal of Power Sources, 465, p.228238. https://doi.org/10.1016/j.jpowsour.2020.228238. DOI: https://doi.org/10.1016/j.jpowsour.2020.228238

Prismatic Cell and Pouch Batteries - Lithium Ion Battery Applications. [online] Available at: https://www.epectec.com/batteries/prismatic-pouch-packs.html [Accessed 7 October 2021].

Request for issuance of a new COC to include a running change – Addition of Performance AWD (21" Wheels) Variant to the Model Y AWD Platform. [online] Available at: https://dis.epa.gov/otaqpub/display_file.jsp?docid=50641&flag=1 [Accessed 13 November 2022].

Sahraei, E., Hill, R. and Wierzbicki, T., 2012. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity. Journal of Power Sources, 201, pp.307–321. https://doi.org/10.1016/j.jpowsour.2011.10.094. DOI: https://doi.org/10.1016/j.jpowsour.2011.10.094

Sankaran, G. and Venkatesan, S., 2021. Standardization of electric vehicle battery pack geometry form factors for passenger car segments in India. Journal of Power Sources, 502, p.230008. https://doi.org/10.1016/j.jpowsour.2021.230008. DOI: https://doi.org/10.1016/j.jpowsour.2021.230008

Saw, L.H., Ye, Y. and Tay, A.A.O., 2013. Electrochemical–thermal analysis of 18650 Lithium Iron Phosphate cell. Energy Conversion and Management, 75, pp.162–174. https://doi.org/10.1016/j.enconman.2013.05.040. DOI: https://doi.org/10.1016/j.enconman.2013.05.040

Simões, A.F., Kutianski José Romeiro, L. and Massao Kurita, R., 2021. Interrelationships between policies to encourage biofuels, energy efficiency and climate change mitigation: A synergistic analysis focusing on the Brazilian RenovaBio Program. Latin American Journal of Energy Research, 8(1), pp.46–58. https://doi.org/10.21712/lajer.2021.v8.n1.p46-58. DOI: https://doi.org/10.21712/lajer.2021.v8.n1.p46-58

Simon, B., Ziemann, S. and Weil, M., 2015. Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe. Resources, Conservation and Recycling, 104, pp.300–310. https://doi.org/10.1016/j.resconrec.2015.07.011. DOI: https://doi.org/10.1016/j.resconrec.2015.07.011

Skjølsvold, T.M. and Ryghaug, M., 2020. Temporal echoes and cross-geography policy effects: Multiple levels of transition governance and the electric vehicle breakthrough. Environmental Innovation and Societal Transitions, 35, pp.232–240. https://doi.org/10.1016/j.eist.2019.06.004. DOI: https://doi.org/10.1016/j.eist.2019.06.004

Tesla Model Y Long Range Dual Motor. [online] EV Database. Available at: https://ev-database.org/car/1619/Tesla-Model-Y-Long-Range-Dual-Motor [Accessed 13 November 2022].

Warner, J., 2014. Lithium-Ion Battery Packs for EVs. In: Lithium-Ion Batteries. [online] Elsevier. pp.127–150. https://doi.org/10.1016/B978-0-444-59513-3.00007-8. DOI: https://doi.org/10.1016/B978-0-444-59513-3.00007-8

Warner, J., 2015. The handbook of lithium-ion battery pack design: chemistry, components, types and terminology. Oxford New York: Elsevier. DOI: https://doi.org/10.1016/B978-0-12-801456-1.00003-8

Williams, N., 2022. Tesla’s 2170 vs 4680 Batteries: What’s The Difference? History-Computer. Available at: https://history-computer.com/teslas-2170-vs-4680-batteries/ [Accessed 13 November 2022].

Xing, B., Xiao, F., Korogi, Y., Ishimaru, T. and Xia, Y., 2021. Direction-dependent mechanical-electrical-thermal responses of large-format prismatic Li-ion battery under mechanical abuse. Journal of Energy Storage, 43, p.103270. https://doi.org/10.1016/j.est.2021.103270. DOI: https://doi.org/10.1016/j.est.2021.103270

Yang, C., Li, P., Yu, J., Zhao, L.-D. and Kong, L., 2020. Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations. Energy, 201, p.117718. https://doi.org/10.1016/j.energy.2020.117718. DOI: https://doi.org/10.1016/j.energy.2020.117718

Yoo, S., Hong, C., Chong, K.T. and Seul, N., 2019. Analysis of Pouch Performance to Ensure Impact Safety of Lithium-Ion Battery. Energies, 12(15), p.2865. https://doi.org/10.3390/en12152865. DOI: https://doi.org/10.3390/en12152865

Yu, Y., Zhang, B., Feng, M., Qi, G., Tian, F., Feng, Q., Yang, J. and Wang, S., 2017. Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites. Composites Science and Technology, 147, pp.62–70. https://doi.org/10.1016/j.compscitech.2017.04.031. DOI: https://doi.org/10.1016/j.compscitech.2017.04.031

Downloads

Publicado

28-12-2023

Como Citar

Hummes, D. N., Hunt, J., Hervé, B. B., Schneider, P. S., & Montanari, P. M. (2023). A comparative study of different battery geometries used in electric vehicles. Latin American Journal of Energy Research, 10(2), 94–114. https://doi.org/10.21712/lajer.2023.v10.n2.p94-114

Edição

Seção

Transição Energética