Captura de carbono: avanços e desafios das tecnologias no contexto energético
DOI:
https://doi.org/10.21712/lajer.2024.v11.n2.p264-282Palavras-chave:
captura de carbono, descarbonização, combustão, mudanças climáticas, transição energéticaResumo
A captura de carbono surge como uma estratégia crucial para mitigar as mudanças climáticas, equilibrando o desenvolvimento econômico e a preservação ambiental. Com foco na redução das emissões de gases de efeito estufa (GEE), existem tecnologias voltadas à captura de dióxido de carbono (CO2) de fontes emissoras antes de sua liberação na atmosfera, possibilitando seu armazenamento em formações geológicas ou sua reutilização na produção de produtos de alto valor, como os combustíveis sintéticos. Aliada às políticas climáticas internacionais, como o Acordo de Paris, e ao mercado de carbono, a captura de carbono complementa fontes renováveis e promove a inovação tecnológica. Apesar dos desafios técnicos e econômicos, sua aplicação é essencial para uma transição energética sustentável, reforçando a descarbonização e contribuindo para o enfrentamento das mudanças climáticas. Este estudo apresenta uma análise abrangente das tecnologias de captura, utilização e armazenamento de carbono (CCUS, Carbon Capture, Utilization and Storage), abordando seu potencial, limitações e papel na transição para uma economia de baixo carbono.
Downloads
Referências
Abd, AA, Naji, SZ, Hashim, AS, Othman, MR (2020) ‘Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review’, Journal of Environmental Chemical Engineering, v. 8, n. 5, pp. 104142.
Abanades, JC, Alonso, M, Rodriguez, N (2011) ‘Experimental validation of in situ CO2 capture with CaO during the low temperature combustion of biomass in a fluidized bed reactor’, International Journal of Greenhouse Gas Control, v. 5, n. 3, p. 512-520.
Arnold, K, Stewart, M (2008) Surface production operations: design of oil handling systems and facilities. Boston: Gulf.
Alonso, M, Diego, ME, Pérez, C, Chamberlain, JR, Abanades, JC (2014) ‘Biomass combustion with in situ CO2 capture by CaO in a 300 kWth circulating fluidized bed facility’, International Journal of Greenhouse Gas Control, v. 29, pp. 142-152.
Bailera, M, Kezibri, N, Romeo, L M, Espatolero, S, Lisbona, P, Bouallou, C (2017) ‘Future applications of hydrogen production and CO2 utilization for energy storage: Hybrid Power to Gas-Oxycombustion power plants’, International journal of hydrogen energy, v. 42, n. 19, pp. 13625-13632.
Bridgwater, AV (2003) ‘Renewable fuels and chemicals by thermal processing of biomass’, Chemical engineering journal, v. 91, n. 2-3, pp. 87-102.
Berstad, D, Anantharaman, R, Nekså, P (2013) ‘Low-temperature CO2 capture technologies–Applications and potential’, International Journal of Refrigeration, v. 36, n. 5, pp. 1403-1416.
Buvik, V, Høisæter, KK, Vevelstad, SJ, Knuutila, HK (2021) ‘A review of degradation and emissions in post-combustion CO2 capture pilot plants’, International Journal of Greenhouse Gas Control, v. 106, p. 103246.
Choi, WJ, Seo, JB, Jang, SY, Jung, JH, Oh, KJ (2009) ‘Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process’, Journal of Environmental Sciences, v. 21, n.7, pp. 907-913.
Consoli, C (2019) ‘Bioenergy and carbon capture and storage’, Global CCS Institute, pp.1-14.
Cormos, CC, Cormos, AM, Agachi, S (2009) ‘Power generation from coal and biomass based on integrated gasification combined cycle concept with pre‐and post‐combustion carbon capture methods’, Asia‐Pacific Journal of Chemical Engineering, v. 4, n. 6, pp. 870-877.
Dell’Aversano, S, Villante, C, Gallucci, K, Vanga, G, Di Giuliano, A (2024), ‘E-Fuels: A Comprehensive Review of the Most Promising Technological Alternatives towards an Energy Transition.’, Energies, v. 17, n. 16, p. 3995.
Diego, ME, Alonso, M (2016) ‘Operational feasibility of biomass combustion with in situ CO2 capture by CaO during 360 h in a 300 kWth calcium looping facility’, Fuel, v. 181, pp. 325-329.
Dziejarski, B, Krzyżyńska, R, Andersson, K (2023), ‘Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment’, Fuel, v. 342, p. 127776.
E. NEWS (2021) ‘The Kemper project just collapsed: What it signifies for CCS’. Disponível em: , (acesso em 09 julho 2024).
El-Naas, MH, Al-Marzouqi, M., Marzouk, SA, Abdullatif, N (2010) ‘Avaliação da remoção de CO2 utilizando contatores de membrana: molhabilidade da membrana’, Journal of Membrane Science, v. 350, n. 1-2, p. 410-416.
Fankhauser, S, Smith, SM, Allen, M, Axelsson, K, Hale, T, Hepburn, C, Kendall, JM, Khosla, R, Lezaun, J, Mitchell-Larson, L, Obersteiner, M, Rajamani, L, Rickaby, R, Seddon, N, Wetzer, T (2022) ‘The meaning of net zero and how to get it right’, Nature Climate Change, v. 12, n. 1, pp. 15-21.
Fu, YJ, Liao, KS, Hu, CC, Lee, KR, Lai, JY (2011) ‘Development and characterization of micropores in carbon molecular sieve membrane for gas separation’, Microporous and Mesoporous Materials, v. 143, n. 1, pp. 78-86.
Global CCS Institute (2021) ‘Technology readiness and costs of CCS 2 the circular carbon economy: keystone to global sustainability series’. Disponível em: (Acesso em 04 julho 2024).
IEA (2020) ‘Clean Energy Innovation – Analysis’. Disponível em: (Acesso em 01 julho 2024).
IEAGHG (2019) ‘New IEAGHG Technical Report: 2019-09 ‘Further Assessment of Emerging CO2 Capture Technologies for the Power Sector and their Potential to Reduce Costs’. Disponível em: <https://ieaghg.org/news/new-ieaghg-technical-report-2019-09-further> (Acesso em 03 julho 2021).
Jansen, D, Gazzani, M, Manzolini, G, van Dijk, E, Carbo, M (2015) ‘Pre-combustion CO2 capture’, International Journal of Greenhouse Gas Control, v. 40, pp. 167-187.
Jeddizahed, J, Webley, PA, Hughes, TJ (2024), ‘Integrating alkaline electrolysis with oxyfuel combustion for hydrogen and electricity production’, Applied Energy, v. 361, p. 122856.
Kargbo, H, Harris, JS, Phan, AN (2021) ‘“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability’, Renewable and Sustainable Energy Reviews, v. 135, p. 110168.
Khan, U, Ogbaga, CC, Abiodun, OAO, Adeleke, AA, Ikubanni, PP, Okoye, PU, Okolie, JA (2023) ‘Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview’, Carbon Capture Science & Technology, v. 8, p. 100125.
Li, K, Leigh, W, Feron, P, Yu, H, Tade, M (2016) ‘Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements’, Applied Energy, v. 165, pp. 648-659.
Liu, X, Li, J, Zhou, L, Huang, D, Zhou, Y (2005) ‘Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve’, Chemical physics letters, v. 415, n. 4-6, pp. 198-201.
Luo, M, Yi, Y, Wang, S, Wang, Z, Du, M, Pan, J, Wang, Q. (2018) ‘Review of hydrogen production using chemical-looping technology’, Renewable and Sustainable Energy Reviews, v. 81, pp. 3186-3214.
Madejski, P, Chmiel, K, Subramanian, N, Kuś, T (2022), ‘Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies’, Energies, v. 15, n. 3, p. 887.
Metz, B, Davidson, O, Coninck, H, Loos, M, Meyer, L (2005) ‘PCC special report on carbon dioxide capture and storage www.osti.gov’. Disponível em: (Acesso em 07 fevereiro 2024).
Meisen, A, Shuai, X (1997) ‘Research and development issues in CO2 capture. Energy Conversion and Management, v. 38, p. S37-S42.
Miller, BG (2010) Clean coal engineering technology. Elsevier.
Mirparizi, M, Shakeriaski, F, Salehi, F, Zhang, C (2023) ‘Available challenges and recent progress in carbon dioxide capture, and reusing methods toward renewable energy’, Sustainable Energy Technologies and Assessments, v. 58, p. 103365.
Mukherjee, A, Okolie, JA, Abdelrasoul, A, Niu, C, Dalai, AK (2019) ’Review of post-combustion carbon dioxide capture technologies using activated carbon’, Journal of Environmental Sciences, v. 83, pp. 46-63.
Nanda, S, Reddy, SN, Mitra, SK, Kozinski, JA (2016) ‘The progressive routes for carbon capture and sequestration’, Energy Science & Engineering, v. 4, n. 2, pp. 99-122.
Oreggioni, GD, Friedrich, D, Brandani, S, Ahn, H (2014) ‘Techno-economic study of adsorption processes for pre-combustion carbon capture at a biomass CHP plant’, Energy Procedia, v. 63, pp. 6738-6744.
Patil, T, Dharaskar, S, Sinha, M, Jampa, SS (2022) ‘Effectiveness of ionic liquid-supported membranes for carbon dioxide capture: a review’, Environmental Science and Pollution Research, v. 29, n. 24, pp. 35723-35745.
Podder, PB, Pattnaik, F, Nanda, S, Dalai, A (2023) ‘A review of carbon capture and valorization technologies’, Energies, v. 16, n. 6, p. 2589.
Rackley, SA (2017) Carbon capture and storage. Butterworth-Heinemann.
Rahimpour, MR, Farsi, M, Makarem, MA (ed.) (2020). Advances in carbon capture: methods, technologies and applications. Woodhead Publishing.
Regufe, MJ, Pereira, A, Ferreira, AFP, Ribeiro, AM, Rodrigues, AE (2021) ‘Current developments of carbon capture storage and/or utilization–looking for net-zero emissions defined in the Paris agreement’, Energies (Basel), v. 14, n. 9, p. 2406.
Rostami, S, Keshavarz, P, Raeissi, S (2018) ‘Experimental study on the effects of an ionic liquid for CO2 capture using hollow fiber membrane contactors’, International Journal of Greenhouse Gas Control, v. 69, pp. 1-7.
Sánchez-Fuentes, CE, Pergher, SB, Gutiérrez-Arzaluz, M, Mugica-Álvarez, V, Terrés, E, Torres-Rodríguez, M (2016) ‘Interactions between the Ionic Liquid and the ZrO2 Support in Supported Ionic Liquid Membranes for CO2 Separation’, Technologies, v. 4, n. 4, p. 32.
Setiawan, WK, Chiang, KY (2019) ‘Silica applied as mixed matrix membrane inorganic filler for gas separation: a review’, Sustainable Environment Research, v. 29, n. 1, pp. 1-21.
Siegelman, RL, Kim, EJ, Long, JR (2021) ‘Porous materials for carbon dioxide separations’, Nature materials, v. 20, n. 8, pp. 1060-1072.
Sifat, NS, Haseli, Y (2019) ‘A critical review of CO2 capture technologies and prospects for clean power generation’. Energies, v. 12, n. 21, p. 4143.
Song, C, Liu, Q, Deng, S, Li, H, Kitamura, Y (2019) ‘Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges’, Renewable and sustainable energy reviews, v. 101, pp. 265-278.
Soo, XYD, Lee, JJC, Wu, WY, Tao, L, Wang, C, Zhu, Q, Bu, J (2024) ‘Advancements in CO2 capture by absorption and adsorption: A comprehensive review’, Journal of CO2 Utilization, v. 81, p. 102727.
Theo, WL, Lim, JS, Hashim, H, Mustaffa, AA, Ho, WS (2016) ‘Review of pre-combustion capture and ionic liquid in carbon capture and storage’, Applied energy, v. 183, pp. 1633-1663.
Wang, M, Lawal, A, Stephenson, P, Sidders, J, Ramshaw, C (2011) ‘Post-combustion CO2 capture with chemical absorption: A state-of-the-art review’, Chemical engineering research and design, v. 89, n.9, pp. 1609-1624.
Wang, Y, Zhao, L, Otto, A, Robinius, M, Stolten, D (2017) ‘A review of post-combustion CO2 capture technologies from coal-fired power plants’, Energy Procedia, v. 114, pp. 650-665.
Weng, TH, Tseng, HH, Wey, MY (2010) ‘Fabrication and characterization of poly (phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation’, International journal of hydrogen energy, v. 35, n. 13, pp. 6971-6983.
Wilson, SM, Kennedy, DA, Tezel, FH (2020) ‘Adsorbent screening for CO2/CO separation for applications in syngas production’, Separation and Purification Technology, v. 236, p. 116268.
Wu, F, Argyle, MD, Dellenback, PA, Fan, M (2018) ‘Progress in O2 separation for oxy-fuel combustion–A promising way for cost-effective CO2 capture: A review’, Progress in Energy and Combustion Science, v. 67, pp. 188-205.
Younas, M, Sohail, M, Leong, LK, Bashir, MJ, Sumathi, S (2016) ‘Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems’, International journal of environmental science and technology, v. 13, pp. 1839-1860.
Zhao, C (2022) ‘Carbon Neutrality: aiming for a net-zero carbon future’, Carbon Neutrality, v. 1, n. 1, p. 2.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Latin American Journal of Energy Research
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.