Avaliação da eficiência na geração de energia elétrica de um motor híbrido (combustão + ar comprimido) a partir de testes em protótipo real


  • Rodrigo Gasparini Croce IFES
  • Antônio Dariva
  • Emerson Pereira Trarbach
  • Filipe Arthur Firmino Monhol




The continuous research for high efficiency and low emission engines are the technological challenges nowadays. Internal combustion engines are widely used due to low-cost if compared to the electrical vehicles' propulsion systems. Unfortunately, internal combustion engines have low efficiency; about 20%-25% are converted to mechanical power. A new hybrid approach engine running on ethanol and compressed air is presented in this paper. As a result, the global engine efficiency is improved once a part of energy comes from compressed air stored in an external reservoir. By measuring the ethanol consumption and the compressed air flux is possible to calculate the global engine efficiency when it runs a stationary electric generator connected to a known load. This paper presents a conceptual working flow of an Internal Combustion Engine and a Hybrid Engine but focused to the prototype developed. The test procedures and results are shown and the potential to apply this new concept in a vehicle.


Não há dados estatísticos.


Cai, M, Kawashima, K e Kagawa, T (2006) ‘Power assessment of flowing compressed air’, Journal of Fluids Engineering, Transactions of the ASME, v. 128, n. 2, pp. 402–405. <https://doi.org/10.1115/1.2170129>.

Carvalho, MAS (2011) Avaliação de um motor de combustão interna ciclo Otto utilizando diferentes tipos de combustíveis. Dissertação de mestrado,Universidade Federal da Bahia, Salvador, BA.

Conklin, JC e Szybist, JP (2010) ‘A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery’, Energy, v. 35, n. 4, pp. 1658–1664. <https://doi.org/10.1016/j.energy.2009.12.012>.

Dariva, A (2013) Tecnologia mecânica em motores de combustão e de ar comprimido. 1. ed. Vitória: [s.n.].

Dimitrova, Z e Maréchal, F (2015) ‘Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization’, Applied Energy, v. 151, pp. 168–177, 2015. <https://doi.org/10.1016/j.apenergy.2015.03.057>.

Dou, W, Li, D, Lu, Y, Yu, X e Roskilly, AP (2017) ‘Evaluation of ideal double-tank hybrid pneumatic engine system under different compression cycle scenarios’, Energy Procedia, v. 142, pp. 1388–1394. <https://doi.org/10.1016/j.egypro.2017.12.524>.

Fazeli, A, Khajepour, A e Devaud, C (2011) ‘A novel compression strategy for air hybrid engines’, Applied Energy, v. 88, n. 9, pp. 2955–2966. <https://doi.org/10.1016/j.apenergy.2011.03.008>.

Goswami, DY e Kreith, F (2017) Energy conversion, 2nd ed. Boca Raton: CRC Press (Taylor & Francis Group, LLC).

Huang, CY, Hu, CK, Yu, CJ e Sung, CK (2013) ‘Experimental investigation on the performance of a compressed-air driven piston engine’, Energies, v. 6, n. 3, pp. 1731–1745. <https://doi.org/10.3390/en6031731>.

Huang, KD e Tzeng, SC (2005) ‘Development of a hybrid pneumatic-power vehicle’, Applied Energy, v. 80, n. 1, pp. 47–59. <https://doi.org/10.1016/j.apenergy.2004.02.006>.

Kiran, P (2013) ‘A Feasibility study on waste heat recovery in six stroke IC engine’, International Journal on Mechanical Engineering and Robotics, v. 1, n. 1, pp. 113–117.

Liu, CM, You, JJ, Sung, CK e Huang, CY (2015) ‘Modified intake and exhaust system for piston-type compressed air engines’, Energy, v. 90, pp. 516–524, 2015. <https://doi.org/10.1016/j.energy.2015.07.085>.

Machado, TAD (2015) Análise exergética de um motor a seis tempos por injeção de vapor. IFES São Mateus, ES.

Martinelli, C (...) Máquinas térmicas I -motores de combustão interna. Unijuí: [s.n., s.d.].

Reddy, BR, Mahesh, B (2018) ‘Six stroke engine’, International Journal of Science and Research, v. 7, n. 4, pp. 239–241, 2018.

Shi, Y, Li, F, Cai, M e Yu, Q (2016) ‘Literature review: present state and future trends of air-powered vehicles’, Journal of Renewable and Sustainable Energy, v. 8, n. 2. <https://doi.org/10.1063/1.4944970>.

Shi, Y, Cai, M, Xu, W e Wang, Y (2019) ‘Methods to evaluate and measure power of pneumatic system and their applications’, Chinese Journal of Mechanical Engineering (English Edition), v. 32, n. 1. <https://doi.org/10.1186/s10033-019-0354-6>.

Soares, FLM, Silva, MMS e Sousa, PJD (2009) Motores de combustão interna. [s.l: s.n.].

Yang, SY, Sung, CK e Huang, CY (2017) ‘Optimization of power management strategy for parallel air-fuel hybrid system’, Energy Procedia, v. 105, pp. 530–536. <https://doi.org/10.1016/j.egypro.2017.03.352>.

Yu, Q e Cai, M (2015) ‘Experimental analysis of a compressed air engine’, Journal of Flow Control, Measurement & Visualization, v. 3, n. 4, pp. 144–153. <https://doi.org/10.4236/jfcmv.2015.34014>.

Yu, Q, Hao, X e Tan, X (2017) ‘Comparative study on air distribution system for piston-type compressed air engine’, Advances in Mechanical Engineering, v. 9, n. 4, pp. 1–11. <https://doi.org/10.1177/1687814017697625>.




Como Citar

Gasparini Croce, R., Dariva, A., Pereira Trarbach, E., & Arthur Firmino Monhol, F. (2021). Avaliação da eficiência na geração de energia elétrica de um motor híbrido (combustão + ar comprimido) a partir de testes em protótipo real. Latin American Journal of Energy Research, 7(1), 34–45. https://doi.org/10.21712/lajer.2020.v7.n1.p34-45




Artigos mais lidos pelo mesmo(s) autor(es)