Detection of SARS-CoV-2 in wastewater from a penal establishment and an university hospital: protocols and standardization of collections

Authors

DOI:

https://doi.org/10.47456/rbps.v25i3.41091

Keywords:

Wastewater-Based Epidemiological Monitoring, Planning, COVID-19 Testing, Problem-Based Learning, Penal institution, Hospitals University

Abstract

Introduction: Sewage monitoring as a way to control COVID-19 is recognized worldwide since 2020. The reliability of the results depends on a representative methodology of all the variables involved in the process. The peculiarities of each collection environment make the standardization of procedures an arduous and non-linear process. Objective: This report aims to show the challenges and overcoming in the process of collecting and storing wastewater samples. Methods: collection of sewage samples for physical-chemical and molecular analysis for the detection of SARS-CoV-2, from a semi-open penal establishment and a university hospital. Experience report: The collections were carried out effectively and sent to Biosafety Level 2 laboratories for the initial procedures of pre-filtration and concentration of SARS-CoV-2. The difficulties encountered were: bureaucracy in the process of releasing the project execution, specificity of the pipes, difference in the representativeness of the samples, need for speed in the transport of the samples, unhealthy environments in the physical structures of the evaluated sewage, presenting physical and biological risks for the team. Conclusion: The main aspect of the study was the physical-chemical characterization and monitoring of the genetic material of SARS-CoV-2, but difficulties encountered initially, showed the need for standardization in future wastewater projects.

Downloads

Download data is not yet available.

References

Kitajima M, Ahmed W, Bibby K, Carducci A, Gerba CP, Hamil¬ton KA, et al. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci Total Environ. 2020; 739:139076.

Prado T, Fumian TM, Mannarino CF, Resende PC, Motta FC, Eppinghaus ALF, et al. Wastewater-based epidemiology as a use¬ful tool to track SARS-CoV-2 and support public health policies at municipal level in Brazil. Water Res. 2021; 191:116810.

Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Sci. 2020; 368(6490):489-493.

Desdouits M, Piquet JC, Wacrenier C, Le Mennec C, Parnaudeau S, Jousse S, et al. Can shellfish be used to monitor SARS-CoV-2 in the coastal environment?. Sci Total Environ. 2021; 778:146270.

Albastaki A, Naji M, Lootah R, Almeheiri R, Almulla H, Almarri I, et al. First confirmed detection of SARS-COV-2 in untreated municipal and aircraft wastewater in Dubai, UAE: The use of wastewater based epidemiology as an early warning tool to monitor the prevalence of COVID-19. Sci Total Environ. 2021; 760:143350.

Hemalatha M, Kiran U, Kuncha SK, Kopperi H, Gokulan CG, Mohan SV, et al. Surveillance of SARS-CoV-2 spread using wastewater-based epidemiology: Comprehensive study. Sci Total Environ. 2021; 768:144704.

Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS- CoV, and MERS-CoV viral load dynamics, dura¬tion of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2021; 2(1):e13-e22.

Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020; 26(4):502-505.

Weidhaas J, Aanderud ZT, Roper DK, VanDerslice J, Gaddis EB, Ostermiller J, et al. Correlation of SARS-CoV-2 RNA in waste¬water with COVID-19 disease burden in sewersheds. Sci Total Environ. 2021; 775:145790.

De Sousa ARV, Silva LDC, de Curcio JS, Delleon H, Anunciação CE, Furlaneto SMSI, et al. Detecção de SARS-CoV-2 em águas residuárias como ferramenta de predição de infectados de uma capital da região centro-oeste do Brasil. Braz J Infec Dis. 2020; 26:102024.

Alhama J, Maestre JP, Martín MÁ, Michan C. Monitoring COVID-19 through SARS-CoV-2 quantification in wastewater: progress, challenges and prospects. Microbi Biotechnol. 2022; 15(6):1719-1728.

Barreto ML, Barros AJDD, Carvalho MS, Codeço CT, Hallal PRC, Medronho RDA, et al. O que é urgente e necessário para subsidiar as políticas de enfrentamento da pandemia de COVID- 19 no Brasil?. Rev Bras Epidemiol. 2020; 23.

McQuade ETR, Blake IM, Brennhofer SA, Islam MO, Sony SSS, Rahman T, et al. Real-time sewage surveillance for SARS-CoV-2 in Dhaka, Bangladesh versus clinical COVID-19 surveillance: a longitudinal environmental surveillance study (December, 2019–December, 2021). The Lancet Microbe. 2023.

Kasprzyk-Hordern B, Bijlsma L, Castiglioni S, et al. Wastewa¬ter-based epidemiology for public health monitoring. Water and Sewerage Journal. 2014; 4:25-26.

Ahmed W, Bertsch PM, Bivins A, Bibby K, Gathercole A, Har¬amoto E, et a. Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a sur¬rogate for SARS-CoV-2 from untreated wastewater. Sci Total Environ. 2020; 739:139960.

Haramoto E, Malla B, Thakali O, Kitajima M. First environ¬mental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci Total Environ. 2020; 737:140405.

Parida VK, Saidulu D, Bhatnagar A, Gupta AK, Afzal MS. A critical assessment of SARS-CoV-2 in aqueous environment: Existence, detection, survival, wastewater-based surveillance, inactivation methods, and effective management of COVID-19. Chemosphere. 2023; 138503.

Leal CD, Espinosa AMF, Araújo JC. Roteiros para análises e determinações em amostras de esgoto. Roteiro 5: Concentração e quantificação do novo coronavírus por técnicas moleculares. Eng Sanit e Ambient. 2022; 2(4):33-40.

Bofill-Mas S, Rusiñol M. Recent trends on methods for the con¬centration of viruses from water samples. Curr Opin Environ Sci Health. 2020; (16):7-13.

Patel M, Chaubey AK, Pittman Jr, CU, Mlsna T, Mohan D. Coro¬navirus (SARS-CoV-2) in the environment: occurrence, per¬sistence, analysis in aquatic systems and possible management. Sci Total Environ. 2021; 765:142698.

Yang Q, Rivailler P, Zhu S, Yan D, Xie N, Tang H, et al. Detec¬tion of multiple viruses potentially infecting humans in sewage water from Xinjiang Uygur Autonomous Region, China. Sci Total Environ. 2021; 754:142322.

Centers for Disease Control and Prevention. Handling Human Waste or Sewage | Water, Sanitation, & Hygiene-related Emer¬gencies & and Outbreaks | Healthy Water | CDC [Internet]. 2022 [cited 2023 May 23]. Available from: https://www.cdc.gov/ healthywater/emergency/sanitation- wastewater/workers_han¬dlingwaste.html.

Kasloff SB, Leung A, Strong JE, Funk D, Cutts T. Stability of SARS-CoV-2 on critical personal protective equipment. Sci Rep. 2021; 11(1):1-7.

Published

2023-12-27

How to Cite

1.
Maria da Silva CC, Fagundes Pussi K, Pivante Céleri E, Salles D, Miranda Fardin J, Rangel de Lima Santos C, et al. Detection of SARS-CoV-2 in wastewater from a penal establishment and an university hospital: protocols and standardization of collections. RBPS [Internet]. 2023 Dec. 27 [cited 2024 Aug. 17];25(3):47-52. Available from: https://periodicos.ufes.br/rbps/article/view/41091

Issue

Section

Relatos de Experiência