Sob a influência do Sol: como o clima espacial afeta nosso planeta

Autores/as

DOI:

https://doi.org/10.47456/Cad.Astro.v5n2.45935

Palabras clave:

Sol, Atmosfera solar, Atividade Solar, Clima Espacial, Tempestades Geomagnéticas

Resumen

Nossa estrela, o Sol, apresenta atividade magnética na forma de manchas escuras em sua superfície, além de produzir explosões e ejeções de massa de sua atmosfera. Este artigo explora a dinâmica do Sol e seus efeitos no Sistema Solar, particularmente na Terra. A atmosfera solar, que inclui a fotosfera, cromosfera, região de transição e coroa, juntamente com o vento solar desempenham um papel crucial na compreensão da atividade solar. O campo magnético do Sol, fonte de energia de toda a atividade, é discutido em detalhe, incluindo as manchas solares e seu ciclo de 11 anos, além dos grandes mínimos como o Mínimo de Maunder e seu impacto no clima terrestre. As explosões solares e ejeções de massa coronais são o principal fator do clima espacial, afetando vários aspectos do ambiente do nosso planeta. Partículas energéticas de explosões e ejeções de massa interagem com a magnetosfera da Terra, causando tempestades geomagnéticas que podem impactar significativamente os sistemas tecnológicos. Estas tempestades podem causar falhas em satélites, interrupções em sistemas de comunicação, apagões e auroras, além de afetar a ionosfera. Compreender os fenômenos da atividade solar é essencial para melhorar as previsões do clima espacial e mitigar os impactos dos eventos solares sobre a tecnologia e infraestrutura modernas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

A. V. R. Silva, Nossa Estrela: o Sol (Livraria da Física, 2006), 1 ed.

S. O. Kepler e M. F. O. Saraiva, Astronomia & Astrofísica (Livraria da Física, 2014), 3 ed. Disponível em http://astro.if.ufrgs.br/livro.pdf.

M. Stix, The Sun. An Introduction (1991).

J. P. Rozelot, Solar photosphere (Springer Netherlands, Dordrecht, 1997), 754–756. DOI: https://doi.org/10.1007/1-4020-4520-4_379

S. K. Solanki, Sunspots: An overview, The Astronomy and Astrophysics Review 11(23), 153 (2003). DOI: https://doi.org/10.1007/s00159-003-0018-4

J. E. Vernazza, E. H. Avrett e R. Loeser, Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun., The Astrophysical Journal Supplement Series 45, 635 (1981). DOI: https://doi.org/10.1086/190731

C. L. Selhorst, A. V. R. Silva e J. E. R. Costa, Solar atmospheric model with spicules applied to radio observation, Astronomy & Astrophysics 433(1), 365 (2005). DOI: https://doi.org/10.1051/0004-6361:20042043

P. Schwartz et al., 2D non-LTE modelling of a filament observed in the Hα line with the DST/IBIS spectropolarimeter, Astronomy & Astrophysics 631, A146 (2019). ArXiv: 1910.03607. DOI: https://doi.org/10.1051/0004-6361/201935358

S. R. Cranmer e A. R. Winebarger, The Properties of the Solar Corona and Its Connection to the Solar Wind, Annual Review of Astronomy and Astrophysics 57, 157 (2019). ArXiv:1811.00461. DOI: https://doi.org/10.1146/annurev-astro-091918-104416

J. A. Klimchuk, On Solving the Coronal Heating Problem, Solar Physics 234(1), 41 (2006). ArXiv:astro-ph/0511841. DOI: https://doi.org/10.1007/s11207-006-0055-z

A. A. Vidotto, The evolution of the solar wind, Living Reviews in Solar Physics 18(1), 3 (2021). ArXiv:2103.15748. DOI: https://doi.org/10.1007/s41116-021-00029-w

E. Parker, Extension of the Solar Corona into Interplanetary Space, Journal of Geophysical Research 64(11), 1675 (1959). DOI: https://doi.org/10.1029/JZ064i011p01675

R. G. Marsden, The heliosphere after Ulysses, Astrophysics and Space Science 277, 337 (2001). DOI: https://doi.org/10.1007/978-94-010-0904-1_46

J. L. Phillips et al., Ulysses Solar Wind Plasma Observations at High Southerly Latitudes, Science 268(5213), 1030 (1995). DOI: https://doi.org/10.1126/science.268.5213.1030

I. G. Richardson, Solar wind stream interaction regions throughout the heliosphere, Living Reviews in Solar Physics 15(1), 1 (2018). DOI: https://doi.org/10.1007/s41116-017-0011-z

S. D. Bale et al., The FIELDS Instrument Suite for Solar Probe Plus. Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients, Space Science Reviews 204(1-4), 49 (2016).

F. S. Mozer et al., Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma, The Astrophysical Journal Supplement Series 246(2), 68 (2020). DOI: https://doi.org/10.3847/1538-4365/ab7196

M. Opher et al., Magnetized jets driven by the Sun: The structure of the heliosphere revisited—Updates, Physics of Plasmas 23(5), 056501 (2016). DOI: https://doi.org/10.1063/1.4943526

P. Charbonneau, Dynamo models of the solar cycle, Living Reviews in Solar Physics 17(1), 4 (2020). DOI: https://doi.org/10.1007/s41116-020-00025-6

I. G. Usoskin, A history of solar activity over millennia, Living Reviews in Solar Physics 20(1), 2 (2023). DOI: https://doi.org/10.1007/s41116-023-00036-z

A. Valio et al., Correlations of Sunspot Physical Characteristics during Solar Cycle 23, Solar Physics 295(9), 120 (2020). DOI: https://doi.org/10.1007/s11207-020-01691-3

C. Fröhlich, Total Solar Irradiance: What Have We Learned from the Last Three Cycles and the Recent Minimum?, Space Science Reviews 176(1-4), 237 (2013). DOI: https://doi.org/10.1007/s11214-011-9780-1

H. Schwabe, Die Sonne. Von Herrn Hofrath Schwabe, Astronomische Nachrichten 20(17), 283 (1843). DOI: https://doi.org/10.1002/asna.18430201706

E. W. Maunder, The Prolonged Sunspot Minimum, 1645-1715, Journal of the British Astronomical Association 32, 140 (1922).

J. A. Eddy, The Maunder Minimum, Science 192(4245), 1189 (1976). DOI: https://doi.org/10.1126/science.192.4245.1189

E. W. Cliver et al., Extreme solar events, Living Reviews in Solar Physics 19(1), 2 (2022). ArXiv:2205.09265. DOI: https://doi.org/10.1007/s41116-022-00033-8

A. O. Benz, Flare observations, Living Reviews in Solar Physics 14(1), 2 (2017). DOI: https://doi.org/10.1007/s41116-016-0004-3

D. S. Smith e J. M. Scalo, Risks due to Xray flares during astronaut extravehicular activity, Space Weather 5(6), S06004 (2007). ArXiv:astro-ph/0701314. DOI: https://doi.org/10.1029/2006SW000300

D. F. Webb e T. A. Howard, Coronal Mass Ejections: Observations, Living Reviews in Solar Physics 9(1), 3 (2012). DOI: https://doi.org/10.12942/lrsp-2012-3

N. Gopalswamy, S. Yashiro e S. Akiyama, Geoeffectiveness of halo coronal mass ejections, Journal of Geophysical Research (Space Physics) 112(A6), A06112 (2007). DOI: https://doi.org/10.1029/2006JA012149

W. D. Gonzalez e B. T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms ( Dst < -100 nT), Planetary and Space Science 35(9), 1101 (1987). DOI: https://doi.org/10.1016/0032-0633(87)90015-8

R. C. Carrington, Description of a Singular Appearance seen in the Sun on September 1, 1859, Monthly Notices of the Royal Astronomical Society 20, 13 (1859). DOI: https://doi.org/10.1093/mnras/20.1.13

R. Hodgson, On a curious Appearance seen in the Sun, Monthly Notices of the Royal Astronomical Society 20, 15 (1859). DOI: https://doi.org/10.1093/mnras/20.1.15a

J. Bartels, N. H. Heck e H. F. Johnston, The three-hour-range index measuring geomagnetic activity, Terrestrial Magnetism and Atmospheric Electricity 44(4), 411 (1939). DOI: https://doi.org/10.1029/TE044i004p00411

D. H. Boteler, A 21st Century View of the March 1989 Magnetic Storm, Space Weather 17(10), 1427 (2019). DOI: https://doi.org/10.1029/2019SW002278

T. Dang et al., Unveiling the Space Weather During the Starlink Satellites Destruction Event on 4 February 2022, Space Weather 20(8), e2022SW003152 (2022). DOI: https://doi.org/10.1029/2022SW003152

D. Bilitza et al., The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark, Reviews of Geophysics 60(4), e2022RG000792 (2022). DOI: https://doi.org/10.1029/2022RG000792

L. R. Cander, Ionospheric research and space weather services, Journal of Atmospheric and Solar-Terrestrial Physics 70(15), 1870 (2008). DOI: https://doi.org/10.1016/j.jastp.2008.05.010

S. R. N. Gupta, Review of Aurora borealis spectacular manifestations of solar wind and atmosphere, International Research Journal of Science & Engineering 80(1), 5 (2020).

W. K. Schmutz, Changes in the Total Solar Irradiance and climatic effects, Journal of Space Weather and Space Climate 11, 40 (2021). DOI: https://doi.org/10.1051/swsc/2021016

Publicado

26-09-2024

Cómo citar

[1]
A. Valio, «Sob a influência do Sol: como o clima espacial afeta nosso planeta», Cad. Astro., vol. 5, n.º 2, p. 30–45, sep. 2024.

Número

Sección

Seção Temática