Tensões cosmológicas: status atual e perspectivas futuras
DOI :
https://doi.org/10.47456/Cad.Astro.v5nEspecial.44961Mots-clés :
Cosmologia, tensões cósmicas, energia escuraRésumé
Nos últimos anos tem sido reportada na literatura uma crescente discrepância (tensão) nos valores de importantes parâmetros cosmológicos quando inferidos através de diferentes observações. Além de ser um possível indicativo de problemas no Modelo Padrão da Cosmologia, ou na análise dos dados observacionais, a tensão coloca em questão a consistência de certos procedimentos tipicamente adotados na cosmologia. O problema da tensão na constante de Hubble H0 é considerado por muitos como um dos problemas mais pertinentes da cosmologia atual, e o mesmo está relacionado á um segundo problema, a tensão no parâmetro σ8, associado à amplitude das flutuações lineares da matéria. Aqui serão discutidas algumas das razões pelas quais este problema alcançou tamanha relevância, sendo responsável por grande parte dos esforços na cosmologia moderna. Será apresentado também um breve panorama dos principais cenários que têm sido consideradas na tentativa de abordar tais problemas do ponto de vista da cosmologia. Também serão discutidos os principais desafios e perspectivas futuras nesta direção.
Téléchargements
Références
W. L. Freedman et al., The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch, The Astrophysical Journal 882(1), 34 (2019). DOI: https://doi.org/10.3847/1538-4357/ab2f73
A. G. Riess et al., A 2.4% determination of the local value of the Hubble constant, The Astrophysical Journal 826(1), 56 (2016). DOI: https://doi.org/10.3847/0004-637X/826/1/56
Planck Collaboration et al., Planck 2015 results. XIII. Cosmological parameters, Astronomy & Astrophysics 594, A13 (2016). ArXiv:1502.01589.
Planck Collaboration et al., Planck 2018 results. VI. Cosmological parameters, Astronomy & Astrophysics 641, A6 (2020). ArXiv:1807.06209. DOI: https://doi.org/10.1051/0004-6361/202039265
M. Asgari et al., KiDS-1000 cosmology: Cosmic shear constraints and comparison between two point statistics, Astronomy & Astrophysics 645, A104 (2021). ArXiv:2007.15633. DOI: https://doi.org/10.1051/0004-6361/202039070
I. d. O. C. Pedreira et al., Visual tool for assessing tension-resolving models in the H0-σ 8 plane, Physical Review D 109(10), 103525 (2024). ArXiv:2311.04977. DOI: https://doi.org/10.1103/PhysRevD.109.103525
L. Verde, T. Treu e A. G. Riess, Tensions between the early and late Universe, Nature Astronomy 3(10), 891 (2019). DOI: https://doi.org/10.1038/s41550-019-0902-0
P. L. Kelly et al., The Magnificent Five Images of Supernova Refsdal: Time Delay and Magnification Measurements, The Astrophysical Journal 948(2), 93 (2023). DOI: https://doi.org/10.3847/1538-4357/ac4ccb
E. Di Valentino et al., In the realm of the Hubble tension-a review of solutions, Classical and Quantum Gravity 38(15), 153001 (2021). ArXiv:2103.01183. DOI: https://doi.org/10.1088/1361-6382/ac086d
N. Schöneberg et al., The H0 Olympics: A fair ranking of proposed models, Physics Reports 984, 1 (2022). ArXiv:2107.10291. DOI: https://doi.org/10.1016/j.physrep.2022.07.001
C. Heymans et al., KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints, Astronomy & Astrophysics 646, A140 (2021). ArXiv:2007.15632. DOI: https://doi.org/10.1051/0004-6361/202039063
E. Di Valentino e S. Bridle, Exploring the Tension between Current Cosmic Microwave Background and Cosmic Shear Data, Symmetry 10(11) (2018). DOI: https://doi.org/10.3390/sym10110585
M. Benetti, L. L. Graef e J. Alcaniz, The H 0 and σ8 tensions and the scale invariant spectrum, Journal of Cosmology and Astroparticle Physics 2018(07), 066 (2018). DOI: https://doi.org/10.1088/1475-7516/2018/07/066
L. L. Graef, M. Benetti e J. S. Alcaniz, Primordial gravitational waves and the H0-tension problem, Phys. Rev. D 99, 043519 (2019). DOI: https://doi.org/10.1103/PhysRevD.99.043519
K. Naidoo et al., Dark matter solution to the H0 and S8 tensions, and the integrated Sachs-Wolfe void anomaly, Physical Review D 109(8), 083511 (2024). ArXiv:2209.08102. DOI: https://doi.org/10.1103/PhysRevD.109.083511
M. Benetti et al., Looking for interactions in the cosmological dark sector, Journal of Cosmology and Astroparticle Physics 2019(12), 023 (2019). DOI: https://doi.org/10.1088/1475-7516/2019/12/023
H. Borges et al., Testing the growth rate in homogeneous and inhomogeneous interacting vacuum models, Journal of Cosmology and Astroparticle Physics 2023(06), 009 (2023). DOI: https://doi.org/10.1088/1475-7516/2023/06/009
M. Benetti et al., Dark sector interactions and the curvature of the universe in light of Planck’s 2018 data, Journal of Cosmology and Astroparticle Physics 2021(8), 014 (2021). DOI: https://doi.org/10.1088/1475-7516/2021/08/014
V. Salzano et al., J-PAS: forecasts on interacting vacuum energy models, Journal of Cosmology and Astroparticle Physics 2021(09), 033 (2021). DOI: https://doi.org/10.1088/1475-7516/2021/09/033
L. Knox e M. Millea, Hubble constant hunter’s guide, Phys. Rev. D 101, 043533 (2020). DOI: https://doi.org/10.1103/PhysRevD.101.043533
J. G. Rodrigues et al., Higgs inflation: Constraining the top quark mass and breaking the H0-σ8 correlation, Physics Letters B 852, 138607 (2024). ArXiv:2301.11788. DOI: https://doi.org/10.1016/j.physletb.2024.138607
J. G. Rodrigues, M. Benetti e J. S. Alcaniz, Possible discrepancies between cosmological and electroweak observables in Higgs Inflation, Journal of High Energy Physics 2021(11), 91 (2021). ArXiv:2105.07009. DOI: https://doi.org/10.1007/JHEP11(2021)091
J. G. Rodrigues et al., Probing the seesaw mechanism with cosmological data, Journal of Cosmology and Astroparticle Physics 2020(7), 007 (2020). ArXiv:2002.05154. DOI: https://doi.org/10.1088/1475-7516/2020/07/007
E. Abdalla et al., Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies, Journal of High Energy Astrophysics 34, 49 (2022). ArXiv: 2203.06142.
R. de Sá, M. Benetti e L. Graef, An empirical investigation into cosmological tensions, European Physical Journal Plus 137(10), 1129 (2022). ArXiv:2209.11476. DOI: https://doi.org/10.1140/epjp/s13360-022-03343-w
K. Jedamzik, L. Pogosian e G.-B. Zhao, Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension, Communications Physics 4(1), 123 (2021). ArXiv: 2010.04158. DOI: https://doi.org/10.1038/s42005-021-00628-x
E. Di Valentino et al., Interacting dark energy in the early 2020s: A promising solution to the H0 and cosmic shear tensions, Physics of the Dark Universe 30, 100666 (2020). ArXiv:1908.04281. DOI: https://doi.org/10.1016/j.dark.2020.100666
J. S. Cruz, F. Niedermann e M. S. Sloth, Cold New Early Dark Energy pulls the trigger on the H 0 and S 8 tensions: a simultaneous solution to both tensions without new ingredients, Journal of Cosmology and Astroparticle Physics 2023(11), 033 (2023). ArXiv:2305.08895. DOI: https://doi.org/10.1088/1475-7516/2023/11/033
V. Pettorino, L. Amendola e C. Wetterich, How early is early dark energy?, Phys. Rev. D 87, 083009 (2013). ArXiv:1301.5279. DOI: https://doi.org/10.1103/PhysRevD.87.083009
V. Poulin et al., Early Dark Energy can Re- solve the Hubble Tension, Phys. Rev. Lett. 122, 221301 (2019). DOI: https://doi.org/10.1103/PhysRevLett.122.221301
A. Reeves et al., Restoring cosmological concordance with early dark energy and massive neutrinos?, Monthly Notices of the Royal Astronomical Society 520(3), 3688 (2023). ArXiv:2207.01501. DOI: https://doi.org/10.1093/mnras/stad317
L. Herold e E. G. M. Ferreira, Resolving the Hubble tension with early dark energy, Physical Review D 108(4), 043513 (2023). ArXiv: 2210.16296. DOI: https://doi.org/10.1103/PhysRevD.108.043513
L. Herold, E. G. M. Ferreira e E. Komatsu, New Constraint on Early Dark Energy from Planck and BOSS Data Using the Profile Likelihood, The Astrophysical Journal Letters 929(1), L16 (2022). DOI: https://doi.org/10.3847/2041-8213/ac63a3
S. Basilakos et al., Alleviating both H0 and σ 8 tensions in Tsallis cosmology, European Physical Journal C 84(3), 297 (2024). ArXiv: 2308.01200. DOI: https://doi.org/10.1140/epjc/s10052-024-12573-4
M. Maggiore, Gravitational wave experiments and early universe cosmology, Physics Reports 331(6), 283 (2000). ArXiv:gr-qc/9909001. DOI: https://doi.org/10.1016/S0370-1573(99)00102-7
J. L. Bernal, L. Verde e A. G. Riess, The trouble with H0 , Journal of Cosmology and Astroparticle Physics 2016(10), 019 (2016). ArXiv: 1607.05617. DOI: https://doi.org/10.1088/1475-7516/2016/10/019
N. Arendse et al., Cosmic dissonance: are new physics or systematics behind a short sound horizon?, Astronomy & Astrophysics 639, A57 (2020). ArXiv:1909.07986. DOI: https://doi.org/10.1051/0004-6361/201936720
X. Zhang e Q.-G. Huang, Hubble constant and sound horizon from the late-time Universe, Phys. Rev. D 103, 043513 (2021). Disponível em https://link.aps.org/doi/10.1103/PhysRevD.103.043513. DOI: https://doi.org/10.1103/PhysRevD.103.043513
S. Vagnozzi, New physics in light of the H0 tension: An alternative view, Physical Review D 102(2), 023518 (2020). ArXiv:1907.07569. DOI: https://doi.org/10.1103/PhysRevD.102.023518
B. F. Schutz, Determining the Hubble constant from gravitational wave observations, Nature 323(6086), 310 (1986). DOI: https://doi.org/10.1038/323310a0
D. E. Holz e S. A. Hughes, Using Gravitational-Wave Standard Sirens, The Astrophysical Journal 629(1), 15 (2005). ArXiv:astro-ph/0504616. DOI: https://doi.org/10.1086/431341
H.-Y. Chen, M. Fishbach e D. E. Holz, A two per cent Hubble constant measurement from standard sirens within five years, Nature 562(7728), 545 (2018). ArXiv:1712.06531. DOI: https://doi.org/10.1038/s41586-018-0606-0
E. Di Valentino et al., Cosmological impact of future constraints on H0 from gravitational-wave standard sirens, Physical Review D 98(8), 083523 (2018). ArXiv:1806.07463. DOI: https://doi.org/10.1103/PhysRevD.98.083523
B. P. Abbott et al., A gravitational-wave standard siren measurement of the Hubble constant, Nature 551(7678), 85 (2017). ArXiv: 1710.05835.
A. Pourtsidou e R. B. Metcalf, Gravitational lensing of cosmological 21 cm emission, Monthly Notices of the Royal Astronomical Society 448(3), 2368 (2015). DOI: https://doi.org/10.1093/mnras/stv102
M. Santos et al., Cosmology from a SKA HI intensity mapping survey, in Advancing Astrophysics with the Square Kilometre Array (AASKA14) (2015), 19. ArXiv:1501.03989. DOI: https://doi.org/10.22323/1.215.0019
P. Bull et al., Measuring baryon acoustic oscillations with future SKA surveys, in Advancing Astrophysics with the Square Kilometre Array (AASKA14) (2015), 24. ArXiv:1501.04088. DOI: https://doi.org/10.22323/1.215.0024
K. N. Abazajian et al., CMB-S4 Science Book, First Edition, arXiv:1610.02743 (2016). DOI: https://doi.org/10.2172/1352047
G. Fanizza, Precision Cosmology and Hubble tension in the era of LSS surveys, in The Sixteenth Marcel Grossmann Meeting (World Scientific, 2023), 1792–1802. DOI: https://doi.org/10.1142/9789811269776_0140
C. A. P. Bengaly, C. Clarkson e R. Maartens, The Hubble constant tension with next-generation galaxy surveys, Journal of Cosmology and Astroparticle Physics 2020(5), 053 (2020). ArXiv:1908.04619. DOI: https://doi.org/10.1088/1475-7516/2020/05/053
Téléchargements
Publiée
Comment citer
Numéro
Rubrique
Licence
© Leila L. Graef 2024
Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .