Uma heurística de busca local para o problema de designação de equipes de enfermagem com preferências pessoais
DOI:
https://doi.org/10.47456/bjpe.v10i2.44130Keywords:
Heurísticas, Administração Hospitalar, Busca LocalAbstract
Recentemente, a pesquisa em otimização de saúde tem experimentado um crescimento exponencial, despertando o interesse significativo de pesquisadores e organizações de saúde. Esse aumento de interesse é impulsionado pela complexidade e relevância dos desafios enfrentados pela sociedade, estando diretamente relacionado à necessidade crescente de aprimoramento de processos e à busca por maior eficiência nos sistemas de saúde em escala global. O objetivo deste estudo é desenvolver uma abordagem de otimização, baseada em heurística computacional, para realizar o planejamento e a designação de profissionais de enfermagem em setores hospitalares, visando maximizar tanto as preferências pessoais dos profissionais, como a eficiência nos atendimentos de saúde. O método proposto utiliza um algoritmo heurístico de otimização baseado em busca local com mecanismos de perturbação de solução e vizinhanças de busca eficientes. Os resultados computacionais demonstraram que o método é capaz de realizar designações eficientes de profissionais de enfermagem em setores hospitalares, otimizando a satisfação profissional e a qualidade do serviço prestado. Concluindo, o estudo evidenciou que o método desenvolvido permite uma eficiente gestão e designação de profissionais de enfermagem em ambientes hospitalares, alcançando contribuições científicas e práticas para as áreas de healthcare optimization e administração hospitalar.
Downloads
References
Abdalkareem, Z. A., Amir, A., Al-Betar, M. A., Ekhan, P., & Hammouri, A. I. (2021). Healthcare scheduling in optimization context: a review. Health and Technology, 11, 445-469. https://doi.org/10.1007/s12553-021-00547-5
Awadallah, M. A., Bolaji, A. L. A., & Al-Betar, M. A. (2015). A hybrid artificial bee colony for a nurse rostering problem. Applied Soft Computing, 35, 726-739. https://doi.org/10.1016/j.asoc.2015.07.004
Bilgin, B., Demeester, P., Misir, M., Vancroonenburg, W., & Vanden Berghe, G. (2012). One hyper-heuristic approach to two timetabling problems in health care. Journal of Heuristics, 18, 401-434. https://doi.org/10.1007/s10732-011-9192-0
Burke, E. K., Curtois, T., Post, G., Qu, R., & Veltman, B. (2008). A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem. European journal of operational research, 188(2), 330-341. https://doi.org/10.1016/j.ejor.2007.04.030
Camargo, F. C., Fonseca, C. C. M., Pereira, G. de A., Manzan, W. A., & Junior, H. B. N. (2018). Produção nacional sobre Softwares apoiadores da atuação de enfermeiros hospitalares. Journal of Health Informatics, 10(4), 125-130. Retrieved from https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/584
Castaño, F., & Velasco, N. (2020). Exact and heuristic approaches for the automated design of medical trainee’s rotation schedules. Omega, 97, 102107. https://doi.org/10.1016/j.omega.2019.102107
Chen, P. S., Huang, W. T., Chiang, T. H., & Chen, G. Y. H. (2020). Applying heuristic algorithms to solve inter-hospital hierarchical allocation and scheduling problems of medical staff. International Journal of computational intelligence systems, 13(1), 318-331. https://doi.org/10.2991/ijcis.d.200310.004
Chen, P. S., Tsai, C. C., Dang, J. F., & Huang, W. T. (2022). Developing three-phase modified bat algorithms to solve medical staff scheduling problems while considering minimal violations of preferences and mean workload. Technology and Health Care, 30(3), 519-540. https://doi.org/10.3233/THC-202547
Constantino, A. A., Landa-Silva, D., Melo, E. L. de, Mendonça, C. F. X. de, Rizzato, D. B., & Romão, W. (2014). A heuristic algorithm based on multi-assignment procedures for nurse scheduling. Annals of Operations Research, 218, 165-183. https://doi.org/10.1007/s10479-013-1357-9
Du, G., Jiang, Z., Yao, Y., & Diao, X. (2013). Clinical pathways scheduling using hybrid genetic algorithm. Journal of Medical Systems, 37, 1-17. https://doi.org/10.1007/s10916-013-9945-4
Gür, Ş. & Eren, T. (2018). Application of operational research techniques in operating room scheduling problems: literature overview. Journal of Healthcare Engineering, 2018, 1-15. https://doi.org/10.1155/2018/5341394
Liu, Z., Liu, Z., Zhu, Z., Shen, Y., & Dong, J. (2018). Simulated annealing for a multi-level nurse rostering problem in hemodialysis service. Applied Soft Computing, 64, 148-160. https://doi.org/10.1016/j.asoc.2017.12.005
Mendonca, E. A. & Tachinardi, U. (2018). Artificial Intelligence and Medicine: “times are a’changing”. Journal of Health Informatics, 10(4), 1-2. Retrieved from https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/684
Millard, D., Mesmer, B., Gholston, S., & Kuhn, S. (2018). Optimization of Nurse Staffing under Varying Preferences. Journal of Management & Engineering Integration, 11(1), 11-19. Retrieved from https://www.proquest.com/scholarly-journals/optimization-nurse-staffing-under-varying/docview/2316725562/se-2
Mohd Rasip, N., Basari, A. S. H., Ibrahim, N. K., & Hussin, B. (2015). Enhancement of nurse scheduling steps using particle swarm optimization. In Sulaiman, H., Othman, M., Othman, M., Rahim, Y., Pee, N. (eds), Advanced Computer and Communication Engineering Technology (Volume 315, Chapter 45, pp. 459-469). Springer, Cham. https://doi.org/10.1007/978-3-319-07674-4_45
Mutingi, M. & Mbohwa, C. (2014). Healthcare staff scheduling in a fuzzy environment: A fuzzy genetic algorithm approach. Annals International Conference on Industrial Engineering and Operations Management, Bali, Indonesia, 3038-3047. Retrieved from https://hdl.handle.net/10210/13071
Özder, E. H., Özcan, E., & Eren, T. (2020). A systematic literature review for personnel scheduling problems. International Journal of Information Technology & Decision Making, 19(06), 1695-1735. https://doi.org/10.1142/S0219622020300050
Rahimian, E., Akartunalı, K., & Levine, J. (2017). A hybrid integer and constraint programming approach to solve nurse rostering problems. Computers & Operations Research, 82, 83-94. https://doi.org/10.1016/j.cor.2017.01.016
Soares, C. R., Peres, H. H. C., & de Oliveira, N. B. (2018). Processo de Enfermagem: revisão integrativa sobre as contribuições da informática. Journal of Health Informatics, 10(4), 112-118. Retrieved from https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/550
Strandmark, P., Qu, Y., & Curtois, T. (2020). First-order linear programming in a column generation-based heuristic approach to the nurse rostering problem. Computers & Operations Research, 120, 104945. https://doi.org/10.1016/j.cor.2020.104945
Wong, T. C., Xu, M., & Chin, K. S. (2014). A two-stage heuristic approach for nurse scheduling problem: A case study in an emergency department. Computers & Operations Research, 51, 99-110. https://doi.org/10.1016/j.cor.2014.05.018
Xiang, W., Yin, J., & Lim, G. (2015). An ant colony optimization approach for solving an operating room surgery scheduling problem. Computers & Industrial Engineering, 85, 335-345. https://doi.org/10.1016/j.cie.2015.04.010
You, P. S. & Hsieh, Y. C. (2021). A heuristic algorithm for medical staff’s scheduling problems with multiskills and vacation control. Science Progress, 104(S3), 1-22. https://doi.org/10.1177/00368504211050301
Silva, Y. L. T. V. & Silva, N. E. F. (2023). A Hybrid Non-Dominated Sorting Genetic Algorithm with Local Search for Portfolio Selection Problem with Cardinality Constraints. Exacta. https://doi.org/10.5585/2023.22046
Zhong, X., Zhang, J., & Zhang, X. (2017). A two-stage heuristic algorithm for the nurse scheduling problem with fairness objective on weekend workload under different shift designs. IISE transactions on healthcare systems engineering, 7(4), 224-235. https://doi.org/10.1080/24725579.2017.1356891
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Brazilian Journal of Production Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.

All works published in the Brazilian Journal of Production Engineering (BJPE) are licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).
This means that:
Anyone can copy, distribute, display, adapt, remix, and even commercially use the content published in the journal;
Provided that due credit is given to the authors and to BJPE as the original source;
No additional permission is required for reuse, as long as the license terms are respected.
This policy complies with the principles of open access, promoting the broad dissemination of scientific knowledge.


2.png)


























































