A local search heuristic for nurse assignment problems with personal preferences

Autores

DOI:

https://doi.org/10.47456/bjpe.v10i2.44130

Palavras-chave:

Hospital Administration, Heuristics, Local Search

Resumo

Recently, research into healthcare optimization has experienced exponential growth, arousing significant interest from researchers and healthcare organizations. This increase in interest is driven by the complexity and relevance of the challenges faced by society, and is directly related to the growing need to improve processes and the search for greater efficiency in healthcare systems on a global scale. The aim of this study is to develop an optimization approach, based on computational heuristic, to perform the planning and assignment of nurse professionals in hospital sectors in order to maximize both the personal preferences of the professionals and the efficiency of health care services. The proposed method uses a heuristic optimization algorithm based on local search with solution perturbation mechanisms and efficient search neighbourhoods. The computational results showed that the method could perform efficient assignments of nursing professionals in hospital sectors, optimizing job satisfaction and quality of service provided. In conclusion, the study evidenced that the developed method allows efficient management and assignment of nurse professionals in hospital settings, achieving scientific and practical contributions to the areas of healthcare optimization and hospital administration.

Downloads

Não há dados estatísticos.

Biografia do Autor

Maria Valéria de Carvalho André, Universidade Federal do Vale do São Francisco

Graduanda em Engenharia de Produção pela Universidade Federal do Vale do São Francisco.

Hedivigem Luana Rodrigues da Silva, Universidade Federal de Campina Grande

Graduanda em Engenharia de Produção pela Universidade Federal de Campina Grande.

Yuri Laio Teixeira Veras Silva, Universidade Federal de Campina Grande

Professor Adjunto na Unidade de Engenharia de Produção da Universidade Federal de Campina Grande. Tem experiência nas grandes áreas de Engenharia de Produção, especialmente em pesquisa operacional e simulação, gestão da produção, análise de investimentos, logística e cadeia de suprimentos, com foco na implementação de ferramentas de apoio à tomada de decisão, fundamentadas principalmente em abordagens de programação inteira mista, não-linear, modelos estocásticos, meta-heurísticas, inteligência artificial e abordagens de simulação computacional.

Referências

Abdalkareem, Z. A., Amir, A., Al-Betar, M. A., Ekhan, P., & Hammouri, A. I. (2021). Healthcare scheduling in optimization context: a review. Health and Technology, 11, 445-469. https://doi.org/10.1007/s12553-021-00547-5 DOI: https://doi.org/10.1007/s12553-021-00547-5

Awadallah, M. A., Bolaji, A. L. A., & Al-Betar, M. A. (2015). A hybrid artificial bee colony for a nurse rostering problem. Applied Soft Computing, 35, 726-739. https://doi.org/10.1016/j.asoc.2015.07.004 DOI: https://doi.org/10.1016/j.asoc.2015.07.004

Bilgin, B., Demeester, P., Misir, M., Vancroonenburg, W., & Vanden Berghe, G. (2012). One hyper-heuristic approach to two timetabling problems in health care. Journal of Heuristics, 18, 401-434. https://doi.org/10.1007/s10732-011-9192-0 DOI: https://doi.org/10.1007/s10732-011-9192-0

Burke, E. K., Curtois, T., Post, G., Qu, R., & Veltman, B. (2008). A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem. European journal of operational research, 188(2), 330-341. https://doi.org/10.1016/j.ejor.2007.04.030 DOI: https://doi.org/10.1016/j.ejor.2007.04.030

Camargo, F. C., Fonseca, C. C. M., Pereira, G. de A., Manzan, W. A., & Junior, H. B. N. (2018). Produção nacional sobre Softwares apoiadores da atuação de enfermeiros hospitalares. Journal of Health Informatics, 10(4), 125-130. Retrieved from https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/584

Castaño, F., & Velasco, N. (2020). Exact and heuristic approaches for the automated design of medical trainee’s rotation schedules. Omega, 97, 102107. https://doi.org/10.1016/j.omega.2019.102107 DOI: https://doi.org/10.1016/j.omega.2019.102107

Chen, P. S., Huang, W. T., Chiang, T. H., & Chen, G. Y. H. (2020). Applying heuristic algorithms to solve inter-hospital hierarchical allocation and scheduling problems of medical staff. International Journal of computational intelligence systems, 13(1), 318-331. https://doi.org/10.2991/ijcis.d.200310.004 DOI: https://doi.org/10.2991/ijcis.d.200310.004

Chen, P. S., Tsai, C. C., Dang, J. F., & Huang, W. T. (2022). Developing three-phase modified bat algorithms to solve medical staff scheduling problems while considering minimal violations of preferences and mean workload. Technology and Health Care, 30(3), 519-540. https://doi.org/10.3233/THC-202547 DOI: https://doi.org/10.3233/THC-202547

Constantino, A. A., Landa-Silva, D., Melo, E. L. de, Mendonça, C. F. X. de, Rizzato, D. B., & Romão, W. (2014). A heuristic algorithm based on multi-assignment procedures for nurse scheduling. Annals of Operations Research, 218, 165-183. https://doi.org/10.1007/s10479-013-1357-9 DOI: https://doi.org/10.1007/s10479-013-1357-9

Du, G., Jiang, Z., Yao, Y., & Diao, X. (2013). Clinical pathways scheduling using hybrid genetic algorithm. Journal of Medical Systems, 37, 1-17. https://doi.org/10.1007/s10916-013-9945-4 DOI: https://doi.org/10.1007/s10916-013-9945-4

Gür, Ş. & Eren, T. (2018). Application of operational research techniques in operating room scheduling problems: literature overview. Journal of Healthcare Engineering, 2018, 1-15. https://doi.org/10.1155/2018/5341394 DOI: https://doi.org/10.1155/2018/5341394

Liu, Z., Liu, Z., Zhu, Z., Shen, Y., & Dong, J. (2018). Simulated annealing for a multi-level nurse rostering problem in hemodialysis service. Applied Soft Computing, 64, 148-160. https://doi.org/10.1016/j.asoc.2017.12.005 DOI: https://doi.org/10.1016/j.asoc.2017.12.005

Mendonca, E. A. & Tachinardi, U. (2018). Artificial Intelligence and Medicine: “times are a’changing”. Journal of Health Informatics, 10(4), 1-2. Retrieved from https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/684

Millard, D., Mesmer, B., Gholston, S., & Kuhn, S. (2018). Optimization of Nurse Staffing under Varying Preferences. Journal of Management & Engineering Integration, 11(1), 11-19. Retrieved from https://www.proquest.com/scholarly-journals/optimization-nurse-staffing-under-varying/docview/2316725562/se-2

Mohd Rasip, N., Basari, A. S. H., Ibrahim, N. K., & Hussin, B. (2015). Enhancement of nurse scheduling steps using particle swarm optimization. In Sulaiman, H., Othman, M., Othman, M., Rahim, Y., Pee, N. (eds), Advanced Computer and Communication Engineering Technology (Volume 315, Chapter 45, pp. 459-469). Springer, Cham. https://doi.org/10.1007/978-3-319-07674-4_45 DOI: https://doi.org/10.1007/978-3-319-07674-4_45

Mutingi, M. & Mbohwa, C. (2014). Healthcare staff scheduling in a fuzzy environment: A fuzzy genetic algorithm approach. Annals International Conference on Industrial Engineering and Operations Management, Bali, Indonesia, 3038-3047. Retrieved from https://hdl.handle.net/10210/13071

Özder, E. H., Özcan, E., & Eren, T. (2020). A systematic literature review for personnel scheduling problems. International Journal of Information Technology & Decision Making, 19(06), 1695-1735. https://doi.org/10.1142/S0219622020300050 DOI: https://doi.org/10.1142/S0219622020300050

Rahimian, E., Akartunalı, K., & Levine, J. (2017). A hybrid integer and constraint programming approach to solve nurse rostering problems. Computers & Operations Research, 82, 83-94. https://doi.org/10.1016/j.cor.2017.01.016 DOI: https://doi.org/10.1016/j.cor.2017.01.016

Soares, C. R., Peres, H. H. C., & de Oliveira, N. B. (2018). Processo de Enfermagem: revisão integrativa sobre as contribuições da informática. Journal of Health Informatics, 10(4), 112-118. Retrieved from https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/550

Strandmark, P., Qu, Y., & Curtois, T. (2020). First-order linear programming in a column generation-based heuristic approach to the nurse rostering problem. Computers & Operations Research, 120, 104945. https://doi.org/10.1016/j.cor.2020.104945 DOI: https://doi.org/10.1016/j.cor.2020.104945

Wong, T. C., Xu, M., & Chin, K. S. (2014). A two-stage heuristic approach for nurse scheduling problem: A case study in an emergency department. Computers & Operations Research, 51, 99-110. https://doi.org/10.1016/j.cor.2014.05.018 DOI: https://doi.org/10.1016/j.cor.2014.05.018

Xiang, W., Yin, J., & Lim, G. (2015). An ant colony optimization approach for solving an operating room surgery scheduling problem. Computers & Industrial Engineering, 85, 335-345. https://doi.org/10.1016/j.cie.2015.04.010 DOI: https://doi.org/10.1016/j.cie.2015.04.010

You, P. S. & Hsieh, Y. C. (2021). A heuristic algorithm for medical staff’s scheduling problems with multiskills and vacation control. Science Progress, 104(S3), 1-22. https://doi.org/10.1177/00368504211050301 DOI: https://doi.org/10.1177/00368504211050301

Silva, Y. L. T. V. & Silva, N. E. F. (2023). A Hybrid Non-Dominated Sorting Genetic Algorithm with Local Search for Portfolio Selection Problem with Cardinality Constraints. Exacta. https://doi.org/10.5585/2023.22046 DOI: https://doi.org/10.5585/2023.22046

Zhong, X., Zhang, J., & Zhang, X. (2017). A two-stage heuristic algorithm for the nurse scheduling problem with fairness objective on weekend workload under different shift designs. IISE transactions on healthcare systems engineering, 7(4), 224-235. https://doi.org/10.1080/24725579.2017.1356891 DOI: https://doi.org/10.1080/24725579.2017.1356891

Publicado

13.04.2024

Como Citar

André, M. V. de C., Silva, H. L. R. da, & Silva, Y. L. T. V. (2024). A local search heuristic for nurse assignment problems with personal preferences. Brazilian Journal of Production Engineering, 10(2), 70–81. https://doi.org/10.47456/bjpe.v10i2.44130

Edição

Seção

PESQUISA OPERACIONAL

Artigos mais lidos pelo mesmo(s) autor(es)