Inductive methodology and case study for selection of cutting parameters in micromilling of Inconel 718
DOI:
https://doi.org/10.47456/bjpe.v10i3.44839Palavras-chave:
Miniaturization, Micromilling, Size Effect, Cutting parameters, Inconel 718Resumo
Manufacturing processes have been increasingly innovated to allow the fabrication of miniaturized parts with high levels of dimensional precision. The main difference between micromachining and conventional machining is size effect, which is due to the similar dimensions of the tool edge radius and the minimum chip thickness. Because of size effect, chip formation is more difficult, resulting in high specific cutting energy and poor surface quality. Thus, in micromachining processes, the adequate choice of cutting parameters is fundamental to enable chip formation. Inconel 718 is nickel-based superalloy that is often used in harsh environments because of its high strength and corrosion resistance. However, this material is widely known for its low machinability. Considering the difficulties associated with micromilling of hard-to-cut alloys, a study on the influence of different cutting parameters on output variables in micromilling of Inconel 718 has been conducted. By means of inductive methodology, case studies and bibliographic review, this work aims to determine the most efficient cutting parameters, tool materials and lubrication conditions in micromilling of Inconel 718. The determination of optimized cutting parameters considers the lowest tool wear rates and minimum burr formation.
Downloads
Referências
Aslantas, K. & Çiçek, A. (2018). The effects of cooling/lubrication techniques on cutting performance in micro-milling of Inconel 718 superalloy. Science Direct, 77, 70-73. https://doi.org/10.1016/j.procir.2018.08.219 DOI: https://doi.org/10.1016/j.procir.2018.08.219
Bissacco, G., Hansen, H. N., & Chiffre, L. D. (2005). Micromilling of hardened tool steel for mould making applications. International Journal of Materials Processing Technology, 201-207. https://doi.org/10.1016/j.jmatprotec.2005.05.029 DOI: https://doi.org/10.1016/j.jmatprotec.2005.05.029
Camara, M., Rubio, J. C., Abraao, A., & Davim, J. (2012). State of the art on micromilling of materials, a review. Journal of Materials Science & Technology, 28(8), 673-685. https://doi.org/10.1016/S1005-0302(12)60115-7 DOI: https://doi.org/10.1016/S1005-0302(12)60115-7
Chae, J., Park, S. S., & Freiheit, T. (2006). Investigation of micro-cutting operations. International Journal of Machine Tools and Manufacture, 6(3), 313-332. https://doi.org/10.1016/j.ijmachtools.2005.05.015 DOI: https://doi.org/10.1016/j.ijmachtools.2005.05.015
Flynn, B. B., et al (1990). Empirical research methods in operations management. Journal of operations management, 9, 250-284. https://doi.org/10.1016/0272-6963(90)90098-X DOI: https://doi.org/10.1016/0272-6963(90)90098-X
Garza-Reys, J. A. (2015). Green lean and the need for six sigma. International Journal of Lean Six Sigma, 226-248. DOI: https://doi.org/10.1108/IJLSS-04-2014-0010
Kiswanto, G. Zariatin, D. L., & Ko, T. J. (2014). The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation. Journal of Manufacturing Processes, (16), 435-450. https://doi.org/10.1016/j.jmapro.2014.05.003 DOI: https://doi.org/10.1016/j.jmapro.2014.05.003
Kiswanto, G. Zariatin, D. L., & Ko, T. J. (2019). The Effect of Machining Parameters to the Surface Roughness in Low Speed Machining Micro-milling Inconel 718. International Conference on Materials and Intelligent Manufacturing, 654 (1). DOI: https://doi.org/10.1088/1757-899X/654/1/012014
Kuram, E. & Ozcelik, B. (2015). Optimization of machining parameters during micro-milling of Ti6Al4V titanium alloy and inconel 718 materials using Taguchi method. Journal of Engineering Manufacture. http://dx.doi.org/10.1177/0954405415572662 DOI: https://doi.org/10.1177/0954405415572662
Liu, K. & Melkote, S. N. (2007). Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. International Journal of Mechanical Sciences, 49, 650-660. https://doi.org/10.1016/j.ijmecsci.2006.09.012 . DOI: https://doi.org/10.1016/j.ijmecsci.2006.09.012
Oliveira, D. de. (2019). Efeito escala e integridade superficial no microfresamento da liga de níquel inconel 718. (PhD thesis) - Federal University of Uberlândia, Uberlândia, MG, Brasil.
Oliveira, D. de., et al. (2021). Experimental and Computational Contribution to Chip Geometry Evaluation When Micromilling Inconel 718. Wear, 47,(203658). https://doi.org/10.1016/j.wear.2021.203658 DOI: https://doi.org/10.1016/j.wear.2021.203658
Oliveira, D. de., Gomes, M. C., Santos, A. G. dos., & Silva, M. B. da. (2021). Influence of Cutting Fluid Application Frequency in Micromilling Cutting Forces. International Journal of Engineering Materials and Manufacture, 6(3), 195-201. https://doi.org/10.26776/ijemm.06.03.2021.11 DOI: https://doi.org/10.26776/ijemm.06.03.2021.11
Oliveira, D de., Gomes, M. C., & Silva, M. B. da. (2019). Spheroidal chip in micromilling. Wear. 426-427, 1672-1682. DOI: https://doi.org/10.1016/j.wear.2019.01.090
Sadiq, M. A. et al. (2018) Experimental study of micromilling selective laser melted inconel 718 superalloy. Procedia Manufacturing, 26, 983–992. https://doi.org/10.1016/j.promfg.2018.07.129 DOI: https://doi.org/10.1016/j.promfg.2018.07.129
Saedon, J. B., et al. (2012). Prediction and optimization of tool life in micromilling aisi d2 (62 hrc) hardened steel. Procedia Engineering, (41), 1674-1683. https://doi.org/10.1016/j.proeng.2012.07.367 DOI: https://doi.org/10.1016/j.proeng.2012.07.367
Santos, A. G. dos., et al. (2021). Evaluation of the cutting fluid influence in the burr formation when micro milling inconel 718 and uns s32205 duplex stainless steel. Brazilian Journal of Development, 7(6), 56931-5694. http://dx.doi.org/10.1016/j.promfg.2020.05.082 DOI: https://doi.org/10.34117/bjdv7n6-209
Silva, G. P., Silva, M. B., & Oliveira, D. de. (2023). Influence of Abrasive Deburring in Indirect Tool Wear Measurement in Micromilling of Inconel 718. Journal of Brazilian Society of Mechanical Sciences and Engineering, 45(262). DOI: https://doi.org/10.1007/s40430-023-04190-1
Ucun, I., Aslantas, K., & Bedir, F. (2015). The performance of dlc-coated and uncoated ultra-fine carbide tools in micromilling of inconel 718. Precision Engineering, 41, 135-144. https://doi.org/10.1016/j.precisioneng.2015.01.002 DOI: https://doi.org/10.1016/j.precisioneng.2015.01.002
Wang, F., et al. (2017). Micromilling simulations for the hard-to-cut material, 13th global congress on manufacturing and management, gcmm 2016. Procedia Engineering, 174, 693-699. http://dx.doi.org/10.1016/j.proeng.2017.01.209 DOI: https://doi.org/10.1016/j.proeng.2017.01.209
Zanella, L. C. H. (2013). Metodologia de Pesquisa. 2. ed. [S.l.]: Universidade Federal de Santa Catarina / Sistema UAB.

Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Brazilian Journal of Production Engineering

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Atribuição 4.0 internacional CC BY 4.0 Deed
Esta licença permite que outros remixem, adaptem e desenvolvam seu trabalho não comercialmente, contanto que eles creditem a você e licenciem suas novas criações sob os mesmos termos.