Pirólise catalítica da casca de café: estudo preliminar do rendimento líquido em diferentes condições operacionais
DOI:
https://doi.org/10.21712/lajer.2025.v12.n3.p188-194Palavras-chave:
desoxigenação catalítica, biomassa lignocelulósica, conversão termoquimica, bioenergia sustentável, melhoramento catalíticoResumo
Resíduos agroindustriais lignocelulósicos, como a casca de café, apresentam potencial para a produção de biocombustíveis via pirólise catalítica. Este estudo teve como objetivo caracterizar essa biomassa e avaliar o rendimento líquido da pirólise catalítica in situ em reator de leito fixo. A casca de café foi submetida a análises físico-químicas e termogravimétricas. Os ensaios foram realizados em reator tubular sob atmosfera inerte de nitrogênio, com duas concentrações de catalisador (3% e 17%) e duas temperaturas (480°C e 640°C). A biomassa apresentou baixo teor de umidade e elevado teor de voláteis, indicando bom potencial energético. A maior produção de líquido (49%) foi obtida a 480°C com 17% de catalisador, enquanto a 640°C, a concentração de 3% resultou em rendimento superior (45%), provavelmente devido à intensificação de reações secundárias em temperaturas mais elevadas.
Downloads
Referências
Basu, P (2010) Biomass gasification and pyrolysis: practical design and theory. Academic Press.
Bridgwater, AV (2012) ‘Review of fast pyrolysis of biomass and product upgrading,’ Biomass and Bioenergy, 38, pp. 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
Chan, YH, Dang, KV, Yusup, S, Lim, MT, Zain, AM and Uemura, Y (2014) ‘Studies on catalytic pyrolysis of empty fruit bunch (EFB) using Taguchi’s L9 Orthogonal Array,’ Journal of the Energy Institute, 87(3), pp. 227–234. https://doi.org/10.1016/j.joei.2014.03.008
David, GF et al. (2021) ‘Fast pyrolysis as a tool for obtaining levoglucosan after pretreatment of biomass with niobium catalysts,’ Waste Management, 126, pp. 274–282. https://doi.org/10.1016/j.wasman.2021.03.016
Dias, S de A, Toscano Miranda, N, Maciel Filho, R, Sphaier, LA and Castillo Santiago, Y (2025) ‘Sugarcane Bagasse Fast Pyrolysis: Pilot Plant Challenges,’ Processes, 13(7). https://doi.org/10.3390/pr13072116
Dechao, W et al. (2025) ‘Ex-situ combined with in-situ catalytic pyrolysis: A strategic approach to enhancing furans production from biomass,’ Renewable Energy, 244. https://doi.org/10.1016/j.renene.2025.122697
El Bari, H et al. (2024) ‘Catalytic fast pyrolysis of lignocellulosic biomass: Recent advances and comprehensive overview,’ Journal of Analytical and Applied Pyrolysis. Elsevier B.V. https://doi.org/10.1016/j.jaap.2024.106390
El-Sayed, SA, Khass, TM and Mostafa, ME (2024) ‘Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques,’ Biomass Conversion and Biorefinery, 14(15), pp. 17779–17803. https://doi.org/10.1007/s13399-023-03926-2
Gupta, R et al. (2025) ‘Sustainable valorization of bamboo sawdust via catalytic pyrolysis into renewable liquid fuel and value-added chemicals,’ Engineering Research Express, 7(1). https://doi.org/10.1088/2631-8695/adc0e8
Hassan, NS, Jalil, AA, Hitam, CNC, Vo, DVN and Nabgan, W (2020) ‘Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review,’ Environmental Chemistry Letters. Springer Science and Business Media Deutschland GmbH, pp. 1625–1648. https://doi.org/10.1007/s10311-020-01040-7
Hematkhah, R, Majidian, N, Hallajisani, A and Samipoorgiri, M (2023) ‘Investigation of catalytic pyrolysis of spirulina for bio-oil production,’ Arabian Journal of Chemistry, 16(5). https://doi.org/10.1016/j.arabjc.2023.104691
Kumar Mishra, R (2022) ‘Pyrolysis of low-value waste switchgrass: Physicochemical characterization, kinetic investigation, and online characterization of hot pyrolysis vapours,’ Bioresource Technology, 347. https://doi.org/10.1016/j.biortech.2022.126720
Rehan, M et al. (2017) ‘Effect of zeolite catalysts on pyrolysis liquid oil,’ International Biodeterioration and Biodegradation, 119, pp. 162–175. https://doi.org/10.1016/j.ibiod.2016.11.015
Sánchez-Borrego, FJ, Álvarez-Mateos, P and García-Martín, JF (2021) ‘Biodiesel and other value-added products from bio-oil obtained from agrifood waste,’ Processes, 9(5). https://doi.org/10.3390/pr9050797
Setter, C et al. (2020) ‘Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions,’ Fuel, 261. https://doi.org/10.1016/j.fuel.2019.116420
Shafaghat, H et al. (2019) ‘In-situ and ex-situ catalytic pyrolysis/co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts,’ Chemical Engineering Journal, 366, pp. 330–338. https://doi.org/10.1016/j.cej.2019.02.055
Shakor, ZM, Tayib, YM, AbdulRazak, AA, Shnain, ZY and Al-Shafei, E (2025) ‘Thermogravimetric Analysis Integrated with Mathematcal Methods and Artificial Neural Networks for Optimal Kinetic Modeling of Biomass Pyrolysis: A Review,’ ACS Omega. American Chemical Society, pp. 36750–36770. https://doi.org/10.1021/acsomega.5c02250
Sheng, C and Azevedo, JLT (2005) ‘Estimating the higher heating value of biomass fuels from basic analysis data,’ Biomass and Bioenergy, 28(5), pp. 499–507. https://doi.org/10.1016/j.biombioe.2004.11.008
Tang, X et al. (2024) ‘In-situ and ex-situ selective catalysis of biochar-based catalysts for the production of high-quality bio-oil and H2-rich gas from tobacco stem,’ Journal of Environmental Chemical Engineering, 12(6). https://doi.org/10.1016/j.jece.2024.114268
Tian, B, Xu, L, Jing, M, Liu, N and Tian, Y (2021) ‘A comprehensive evaluation on pyrolysis behavior, kinetics, and primary volatile formation pathways of rice husk for application to catalytic valorization,’ Fuel Processing Technology, 214. https://doi.org/10.1016/j.fuproc.2020.106715
Wang, S, Persson, H, Yang, W and Jönsson, PG (2018) ‘Effect of H2 as Pyrolytic Agent on the Product Distribution during Catalytic Fast Pyrolysis of Biomass Using Zeolites,’ Energy and Fuels, 32(8), pp. 8530–8536. https://doi.org/10.1021/acs.energyfuels.8b01779
Xu, X, Chen, S, Wang, Y, Lv, P, Guo, W and Shu, Y (2025) ‘Investigation of the temperature influence on the catalytic hydrogenation upgrading of bio-oil using industrial nickel based catalyst RZ409,’ Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-14087-9
Yang, H, Yan, R, Chen, H, Lee, DH and Zheng, C (2007) ‘Characteristics of hemicellulose, cellulose and lignin pyrolysis,’ Fuel, 86(12–13), pp. 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Latin American Journal of Energy Research

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.

