Microalgas e a produção de energia de baixo carbono: uma alternativa sustentável aos combustíveis fósseis
DOI:
https://doi.org/10.21712/lajer.2024.v11.n2.p176-191Palavras-chave:
Biocombustíveis, Bioenergia, Microalgas, Energia sustentável, Energia de baixo carbonoResumo
Devido à alta demanda energética mundial e os problemas ambientais derivados da queima de combustíveis fósseis, a sociedade atual lança-se na busca por novas fontes de energia mais sustentáveis, com destaque para a biomassa, merecendo especial atenção as microalgas. Além de fornecer metabólitos essenciais para a produção de biocombustíveis, as microalgas podem ser cultivadas em painéis fotovoltaicos, obtendo energia solar através da fotossíntese. Apesar do grande número de pesquisas, a obtenção de biocombustíveis de microalgas ainda esbarra em algumas limitações. O presente estudo busca avaliar a viabilidade técnica e econômica do uso de microalgas como matéria prima para obtenção de energia, além de apresentar alternativas para superar as limitações do processo.
Downloads
Referências
Al Abdulla, S.A., Al Hammadi, K., Al-Ali, H., Alami, A.H., Abdelkareem, M.A., Olabi, A.G. (2024), “Experimental development of a biological photovoltaic cell (BPV) for energy conversion and simultaneous CO2 capture by utilizing marine microalgae on copper mesh”, Renewable Energy, Elsevier Ltd, Vol. 223, doi: 10.1016/j.renene.2024.120096.
Adeniyi, O.M., Azimov, U., Burluka, A. (2018), “Algae biofuel: Current status and future applications”, Renewable and Sustainable Energy Reviews, Elsevier Ltd, 1 July, doi: 10.1016/j.rser.2018.03.067.
Ahmed, S.F., Rafa, S.J., Mehjabin, A., Tasannum, N., Ahmed, S., Mofijur, M., Lichtfouse, E., Almomani, F., Braduddin, I., Kamangar, S. (2023), “Bio-oil from microalgae: Materials, production, technique, and future”, Energy Reports, Vol. 10, pp. 3297–3314, doi: 10.1016/j.egyr.2023.09.068.
Alves de Souza Panta, D., Pessôa Diniz da Silva, M., Da Silva Gloria, J., Eliza Gama Vieira, G. (2021), “Microalgas como uma alternativa sustentável na produção de biocombustíves 3G”, Desafios - Revista Interdisciplinar Da Universidade Federal Do Tocantins, Universidade Federal do Tocantins, Vol. 8 No. 3, pp. 58–76, doi: 10.20873/uftv8-11171.
Amin, M., Chetpattananondh, P. (2019), “Biochar from extracted marine Chlorella sp. residue for high efficiency adsorption with ultrasonication to remove Cr(VI), Zn(II) and Ni(II)”, Bioresource Technology, Vol. 289, p. 121578, doi: 10.1016/j.biortech.2019.121578.
Amin, M., Chetpattananondh, P., Khan, M.N. (2020), “Ultrasound assisted adsorption of reactive dye-145 by biochars from marine Chlorella sp. extracted solid waste pyrolyzed at various temperatures”, Journal of Environmental Chemical Engineering, Vol. 8 No. 6, p. 104403, doi: 10.1016/j.jece.2020.104403.
Anderson, A., Laohavisit, A., Blaby, I.K., Bombellii, P., Howe, C.J., Merchabt, S.S. (2016) “Exploiting algal NADPH oxidase for biophotovoltaic energy”, Plant Biotechnology Journal, Vol. 14, n. 1, pp. 22-28. doi: doi.org/10.1111/pbi.12332
Araujo, G.S., Lopes, D.N.M., da Silva Santiago, C., da Silva, J.W.A., Fernandes, F.A.N. (2020), “Influence of nutrients on biomass and oil yield from microalgae Chlorella vulgaris for biodiesel production”, Revista Ciencia Agronomica, Universidade Federal do Ceara, Vol. 51 No. 1, pp. 1–8, doi: 10.5935/1806-6690.20200008.
Banerjee, S., Ray, A., Das, D. (2021), “Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO2 sequestration and biofuels production in a biorefinery framework”, Science of the Total Environment, Elsevier B.V., Vol. 762, doi: 10.1016/j.scitotenv.2020.143080.
Bariloche, F. (n.d.). SCIENCE AND ACADEMIA AEE-Institute for Sustainable Technologies (AEE-INTEC) Council on Energy, Environment and Water (CEEW).
BLATT, G. G. Utilização de cromatografia líquida em coluna, em camada delaga e de alta eficiência na separação, isolamento e identificação dos mono-, di- e triacilgliceróis do biodiesel. 2014. Tese de Doutorado — Universidade federal do Rio de Janeiro, Rio de Janeiro, 2014.
Bohutskyi, P., Chow, S., Ketter, B., Fung Shek, C., Yacar, D., Tang, Y., Zivojnovich, M., Betenbaugh, M., Bouwer, E. (2016), “Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae”, Bioresource Technology, Vol. 222, pp. 294–308, doi: 10.1016/j.biortech.2016.10.013.
BRASIL. ANP - Agência Nacional de Petróleo e Biocombustíveis. Resolução nº 14, de 18 de maio de 2012. Especificação do Biodiesel.
Burgel, G., Ribas, P.G., Ferreira, P.C., Passos, M.F., Santos, B., Savi, D.C., Ludwig, T.A.V., Vargas, J., Galli-Terasawa, L., Kava, V. (2022), “Morphology, molecular phylogeny and biomass evaluation of Desmodesmus abundans (Scenedesmaceae-Chlorophyceae) from Brazil”, Brazilian Journal of Biology, Instituto Internacional de Ecologia, Vol. 82, doi: 10.1590/1519-6984.265235.
C, S.M., Perumalsamy, M. (2024), “Bioremediation of dairy industry wastewater and assessment of nutrient removal potential of Chlorella vulgaris”, Biomass Conversion and Biorefinery, Springer Science and Business Media Deutschland GmbH, Vol. 14 No. 9, pp. 10335–10346, doi: 10.1007/s13399-022-03068-x.
Cardoso, A.S., Vieira, G.E.G., Marques, A.K. (2011) “O uso de microalgas para obtenção de biocombustíveis”, Revista Brasileira de Biociências, v.9, n.4, pp. 542-549.
Cardoso, L.G., Duarte, J.H., Andrade, B.B., Lemos, P.V.F., Costa, J.A.V., Druzian, J.I., Chinalia, F.A. (2020), “Spirulina sp. LEB 18 cultivation in outdoor pilot scale using aquaculture wastewater: High biomass, carotenoid, lipid and carbohydrate production”, Aquaculture, Elsevier B.V., Vol. 525, doi: 10.1016/j.aquaculture.2020.735272.
Condor, B.E., de Luna, M.D.G., Chang, Y.-H., Chen, J.-H., Leong, Y.K., Chen, P., Chen, C., Lee, D.,Chang, J. (2022), “Bioethanol production from microalgae biomass at high-solids loadings”, Bioresource Technology, Vol. 363, p. 128002, doi: 10.1016/j.biortech.2022.128002.
Condor, B.E., de Luna, M.D.G., Lacson, C.F.Z., Acebu, P.I.G., Abarca, R.R.M., Nagarajan, D., Lee, D., Chang, J. (2024), “Effects of carbon dioxide concentration and swine wastewater on the cultivation of Chlorella vulgaris FSP-E and bioethanol production from microalgae biomass”, Applied Energy, Vol. 369, p. 123617, doi: 10.1016/j.apenergy.2024.123617.
Costa, J.A.V., Zaparoli, M., Cassuriaga, A.P.A., Cardias, B.B., Vaz, B. da S., Morais, M.G., Moreira, J.B. (2023), “Biochar production from microalgae: a new sustainable approach to wastewater treatment based on a circular economy”, Enzyme and Microbial Technology, Vol. 169, p. 110281, doi: 10.1016/j.enzmictec.2023.110281.
Damtie, M.M., Shin, J., Jang, H.M., Cho, H.U., Wang, J., Kim, Y.M. (2021), “Effects of biological pretreatments of microalgae on hydrolysis, biomethane potential and microbial community”, Bioresource Technology, Vol. 329, p. 124905, doi: 10.1016/j.biortech.2021.124905.
Fong-Lee, N., Phang, S., Thong, C., Periasamy, V., Pindah, J., Yunus, K., Fisher, A.C. (2021) “Integration of bioelectricity generation from algal biophotovoltaic (BPV) devices with remediation of palm oil mill effluent (POME) as substrate for algal growth”, Environmental Technology & Innovation, vol. 21, pp. 1-18. doi: doi.org/10.1016/j.eti.2020.101280
Honório, G.G., da Cunha, J.N., dos Santos Castro Assis, K.L., de Aguiar, P.F., de Andrade, D.F., de Souza, C.G., d’Avila, L.A., Archanjo, B., Achete, C., Pradelle, R., Turcovics, F., Neto, R., D’Elia, E. (2019), “Free glycerol determination in biodiesel samples using palladium nanoparticles modified glassy carbon electrode associated with solid phase extraction”, Journal of Solid State Electrochemistry, Springer New York LLC, Vol. 23 No. 11, pp. 3057–3066, doi: 10.1007/s10008-019-04387-2.
Honorio, G. G. Panorama da produção de biodiesel no Brasil. In: ANAIS DO V COBICET - Congresso Brasileiro Interdisciplinar de Ciência e Tecnologia, 2024. Anais do V COBICET - Congresso Brasileiro Interdisciplinar de Ciência e Tecnologia. [S. l.: s. n.].
IPCC – International Panel Climate Change. 2023: Summary for Policymakers. Geneva: [s. n.]. 182 p.
IEA – International Energy Agency. Sumário executivo – World Energy Outlook 2024 – Analysis. Disponível em: https://www.iea.org/reports/world-energy-outlook-2024/executive-summary?language=pt. Acesso em: 26 out. 2024.
Jin, H., Zhang, H., Zhou, Z., Li, K., Hou, G., Xu, Q., Chuai, W., Zhang, C., Han, D., Hu, Q. (2020), “Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production”, Biotechnology and Bioengineering, John Wiley and Sons Inc., Vol. 117 No. 1, pp. 96–108, doi: 10.1002/bit.27190.
Kannah Ravi, Y., Kavitha, S., Al-Qaradawi, S.Y., Rajesh Banu, J. (2024), “Dual disintegration of microalgae biomass for cost-effective biomethane production: Energy and cost assessment”, Bioresource Technology, Vol. 399, p. 130630, doi: 10.1016/j.biortech.2024.130630.
Klassen, V., Blifernez-Klassen, O., Bax, J., Kruse, O. (2020), “Wastewater-borne microalga Chlamydomonas sp.: A robust chassis for efficient biomass and biomethane production applying low-N cultivation strategy”, Bioresource Technology, Vol. 315, p. 123825, doi: 10.1016/j.biortech.2020.123825.
Li, C., Liu, Z., Ning, D., Pan, J., Li, J. (2021), “Co-Production of Bio-Ethanol and Bio-Oil from Different Species of Macroalgae”, ChemistrySelect, John Wiley and Sons Inc, Vol. 6 No. 9, pp. 2424–2427, doi: 10.1002/slct.202004518.
Lôbo, I.P., Luis, S., Ferreira, C., Serpa Da Cruz, R. (1596), BIODIESEL: PARÂMETROS DE QUALIDADE E MÉTODOS ANALÍTICOS, Quim. Nova, Vol. 32.
Lomeu, A.A., de Mendonça, H. V., Mendes, M.F. (2023), “Microalgae as raw material for biodiesel production: perspectives and challenges of the third generation chain”, Engenharia Agricola, Sociedade Brasileira de Engenharia Agricola, doi: 10.1590/1809-4430-Eng.Agric.v43nepe20220087/2023.
Luiz Custódio Franco, A., Pinheiro Lôbo Rosenira Serpa da Cruz, I., Maria Luz Lapa Teixeira, C., Adolfo de Almeida Neto, J., Silva Menezes, R. (2013), Biodiesel de Microalgas: Avanços e Desafios, Quim. Nova, Vol. 36.
Ma, J., Li, L., Zhao, Q., Yu, L., Frear, C. (2021), “Biomethane production from whole and extracted algae biomass: Long-term performance evaluation and microbial community dynamics”, Renewable Energy, Vol. 170, pp. 38–48, doi: 10.1016/j.renene.2021.01.113.
Manfron, M.P. (1991), “Biodigestão Anaeróbica: uma alternativa para usina de laticínios”, Ciência Rural, v.21, n.1, pp. 145-152. doi: 10.1590/S0103-84781991000100015
Manual do Biodiesel. Curitiba: Editora Blucher, 2006. 340 p. ISBN 978-85-212-0405-3.
Matos, Â.P. (2021), “Advances in Microalgal Research in Brazil”, Brazilian Archives of Biology and Technology, Instituto de Tecnologia do Parana, Vol. 64, pp. 1–15, doi: 10.1590/1678-4324-2021200531.
Megawati, Bahlawan, Z.A.S., Damayanti, A., Putri, R.D.A., Triwibowo, B., Prasetiawan, H., Aji, S.P.K., Prawisnu, A. (2022), “Bioethanol production from glucose obtained from enzymatic hydrolysis of Chlorella microalgae”, Materials Today: Proceedings, Vol. 63, pp. S373–S378, doi: 10.1016/j.matpr.2022.03.551.
de Mendonça, H.V., Otenio, M.H., Marchão, L., Lomeu, A., de Souza, D.S. and Reis, A. (2022), “Biofuel recovery from microalgae biomass grown in dairy wastewater treated with activated sludge: The next step in sustainable production”, Science of the Total Environment, Elsevier B.V., Vol. 824, doi: 10.1016/j.scitotenv.2022.153838.
Miao, X., Wu, Q., Yang, C. (2004), “Fast pyrolysis of microalgae to produce renewable fuels”, Journal of Analytical and Applied Pyrolysis, Vol. 71 No. 2, pp. 855–863, doi: 10.1016/j.jaap.2003.11.004.
Müller, C., Scapini, T., Rempel, A., Abaide, E.R., Camargo, A.F., Nazari, M.T., Tadioto, V., Bonato, C., Tres, M., Zabot, G., Colla, L., Treichel, H., Alves, S. (2023), “Challenges and opportunities for third-generation ethanol production: A critical review”, Engineering Microbiology, Elsevier Inc., 1 March, doi: 10.1016/j.engmic.2022.100056.
Mustapha, S.I., Mohammed, U.A., Rawat, I., Bux, F., Isa, Y.M. (2023), “Production of high-quality pyrolytic bio-oils from nutrient-stressed Scenedesmus obliquus microalgae”, Fuel, Vol. 332, p. 126299, doi: 10.1016/j.fuel.2022.126299.
Nadeem, F., Bhatti, I.A., Ashar, A., Yousaf, M., Iqbal, M., Mohsin, M., Nisar, J., Taman, N., Alwadai, N. (2021), “Eco-benign biodiesel production from waste cooking oil using eggshell derived MM-CaO catalyst and condition optimization using RSM approach”, Arabian Journal of Chemistry, Elsevier B.V., Vol. 14 No. 8, doi: 10.1016/j.arabjc.2021.103263.
Nazari, M.T., Mazutti, J., Basso, L.G., Colla, L.M., Brandli, L. (2021), “Biofuels and their connections with the sustainable development goals: a bibliometric and systematic review”, Environment, Development and Sustainability, Vol. 23 No. 8, pp. 11139–11156, doi: 10.1007/s10668-020-01110-4.
Ng, F.L., Phang, S.M., Thong, C.H., Periasamy, V., Pindah, J., Yunus, K., Fisher, A.C. (2021), “Integration of bioelectricity generation from algal biophotovoltaic (BPV) devices with remediation of palm oil mill effluent (POME) as substrate for algal growth”, Environmental Technology and Innovation, Elsevier B.V., Vol. 21, doi: 10.1016/j.eti.2020.101280.
ONU – Organização das Nações Unidas. Causas e efeitos das mudanças climáticas. Disponível em: https://www.un.org/pt/climatechange/science/causes-effects-climate-change. Acesso em: 26 out. 2024.
Oğuz, A., Köker, L., Ozbayram, E.G., Akcaalan, R., Albay, M. (2024), “Biodiesel Production from Botryococcus sudeticus and Chlorella vulgaris: Assessment of Nitrogen Deficiency on Lipid, Fame Yield and Biodiesel Properties”, Waste and Biomass Valorization, Springer Science and Business Media B.V., Vol. 15 No. 5, pp. 2757–2768, doi: 10.1007/s12649-023-02359-2.
Petrova, N.Z., Tóth, T.N., Shetty, P., Maróti, G., Tóth, S.Z. (2024), “Enhancing biophotovoltaic efficiency: Study on a highly productive green algal strain Parachlorella kessleri MACC-38”, Bioresource Technology, Elsevier Ltd, Vol. 394, doi: 10.1016/j.biortech.2023.130206.
Piloni, R. V., Daga, I.C., Urcelay, C., Moyano, E.L. (2021), “Experimental investigation on fast pyrolysis of freshwater algae. Prospects for alternative bio-fuel production”, Algal Research, Elsevier B.V., Vol. 54, doi: 10.1016/j.algal.2021.102206.
Priharto, N., Ronsse, F., Prins, W., Carleer, R., Heeres, H.J. (2020), “Experimental studies on a two-step fast pyrolysis-catalytic hydrotreatment process for hydrocarbons from microalgae (Nannochloropsis gaditana and Scenedesmus almeriensis)”, Fuel Processing Technology, Elsevier B.V., Vol. 206, doi: 10.1016/j.fuproc.2020.106466.
Raja, S.W., Thanuja, K.G., Karthikeyan, S., Marimuthu, S. (2022), “Exploring the concurrent use of microalgae Coelastrella sp. for electricity generation and dairy wastewater treatment”, Bioresource Technology Reports, Elsevier Ltd, Vol. 17, doi: 10.1016/j.biteb.2021.100889.
Rana, Q. ul ain, Latif, S., Perveen, S., Haq, A., Ali, S., Irfan, M., Gauttam, R., Shah, T., Dawoud, T., Wondmie, G., Bourhia, M., Badshah, M. (2024), “Utilization of microalgae for agricultural runoff remediation and sustainable biofuel production through an integrated biorefinery approach”, Bioresources and Bioprocessing, Springer, Vol. 11 No. 1, doi: 10.1186/s40643-023-00720-w.
Satheesh, S., Pugazhendi, A., Al-Mur, B.A., Balasubramani, R. (2023), “Biohydrogen production coupled with wastewater treatment using selected microalgae”, Chemosphere, Vol. 334, p. 138932, doi: 10.1016/j.chemosphere.2023.138932.
Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O., Hankamer, B. (2008), “Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production”, BioEnergy Research, Springer Science and Business Media LLC, Vol. 1 No. 1, pp. 20–43, doi: 10.1007/s12155-008-9008-8.
Shahi, T., Beheshti, B., Zenouzi, A., Almasi, M. (2020), “Bio-oil production from residual biomass of microalgae after lipid extraction: The case of Dunaliella Sp”, Biocatalysis and Agricultural Biotechnology, Vol. 23, p. 101494, doi: 10.1016/j.bcab.2020.101494.
Sousa, A.L. and Rizzatto, M.L. (2022), “Produção de biogás a partir de resíduos orgânicos: uma revisão”, Scientific Electronic Archives, Scientific Electronic Archives, Vol. 15 No. 2, doi: 10.36560/15220221511.
de Souza, L., Lima, A.S., Matos, Â.P., Wheeler, R.M., Bork, J.A., Vieira Cubas, A.L., Moecke, E.H.S. (2021), “Biopolishing sanitary landfill leachate via cultivation of lipid-rich Scenedesmus microalgae”, Journal of Cleaner Production, Elsevier Ltd, Vol. 303, doi: 10.1016/j.jclepro.2021.127094.
Sukwong, P., Sunwoo, I.Y., Jeong, D.Y., Kim, S.R., Jeong, G.T., Kim, S.K. (2020), “Improvement of bioethanol production by Saccharomyces cerevisiae through the deletion of GLK1, MIG1 and MIG2 and overexpression of PGM2 using the red seaweed Gracilaria verrucosa”, Process Biochemistry, Elsevier Ltd, Vol. 89, pp. 134–145, doi: 10.1016/j.procbio.2019.10.030.
Torres Amaral, E., Alves, G., Julich, J., Da Silva, M.B., De Souza, C. G., Hoeltz, M., De Souza, S. R. Britez, B.L. (2022), “Sanitary Wastewater Supplemented with Glycerol to Obtain Lipid-Rich Microalgal Biomass”, Journal of Environmental Health and Sustainable Development, doi: 10.18502/jehsd.v7i4.11431.
Varaprasad, D., Narasimham, D., Paramesh, K., Sudha, N.R., Himabindu, Y., Keerthi Kumari, M., Parveen, S.N., Chandrasekhar, T. (2021), “Improvement of ethanol production using green alga Chlorococcum minutum”, Environmental Technology (United Kingdom), Taylor and Francis Ltd., Vol. 42 No. 9, pp. 1383–1391, doi: 10.1080/09593330.2019.1669719.
Yu, K.L., Chen, W.H., Sheen, H.K., Chang, J.S., Lin, C.S., Ong, H.C., Show, P.L., Ng, E.P., Ling, T.C. (2020), “Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment”, Renewable Energy, Elsevier Ltd, Vol. 156, pp. 349–360, doi: 10.1016/j.renene.2020.04.064.
Zhu, H., Wang, H., Zhang, Y., Li, Y. (2023), “Biophotovoltaics: Recent advances and perspectives”, Biotechnology Advances, Elsevier Inc., 1 May, doi: 10.1016/j.biotechadv.2023.108101.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Latin American Journal of Energy Research
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.