Dynamo in tesla turbine, based on recyclable materials, for decentralized energy generation and recharge batteries: system evaluations

Authors

  • Alessandro Universidade Paulista
  • Gabriel Universidade Paulista
  • João Guilherme Universidade Paulista
  • Eduarda Regina Carvalho Universidade Paulista

DOI:

https://doi.org/10.21712/lajer.2021.v8.n2.p14-26

Keywords:

decentralized energy; prototype; sustainable development; lead-acid batteries;

Abstract

Nowadays the search for new forms of energy generation is one of the great challenges of humanity. Decentralized energy production as well as material recycling, in order to obtain low-cost environmental gains, are extremely important points, as they are issues that must be evaluated in parallel with sustainable development, being extremely discussed and disseminated for their relevance and importance, since the main focus certainly corresponds the environmental preservation of the planet. In view of this theme, in the present work, a prototype was built using Tesla turbine and a dynamo couplet, aiming at the decentralized energy generation model, for the recharge of lead-acid batteries concomitantly with the challenge of reaching an innovative and unprecedented device with economic and environmental gains. The developed system was made and structured from the manufacture of various accessories obtained from recyclable materials attached to its structure, through the improvement of the physical model during its manufacture until the performance of experimental tests investigating its functionality. The results show that the projected system responded significantly to what was proposed, where the dynamo generated current for the system, providing 12 V in the physical model, recharging the battery. In view of the results obtained, it is believed that the prototype has great potential, in a characteristic line and direction, where with the improvement of the structure and diversification of components it is possible to become a new proposal, that is, an innovative device that meets expectations at an affordable price, being a decentralized model of energy generation and environmentally friendly.

Downloads

Download data is not yet available.

References

Akinyele, DO, Rayudu, R. K., Nair, N. K. C., Chakrabarti, B. (2014) “Decentralized Energy Generation for End-Use Applications: Economic, Social and Environmental Benefits Assessment”, Conference: 2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA). Doi: 10.1109/ISGT-Asia.2014.6873769,

Batista, JC (2009) “Microgeração de energia elétrica (abaixo de 100kw) utilizando turbina tesla modificada”, 107p. Tese (Doutorado) – Guaratinguetá: Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá.

Bonzanini, AV (2012) “Modelamento de uma Turbina Tesla com Avaliação da Sensibilidade dos Principais Parâmetros de Desempenho”. Monografia - Universidade Federal do Rio Grande do Sul. Depto. de Engenharia Mecânica, Rio Grande do Sul.

Cairns, WMJ (2003) “The Tesla Disk Turbine”. Published by Camdem Miniature Steam Services, GB, 2nd Edition.

Couras, DJNP (2009) “Desenvolvimento teórico-experimental de um modelo de turbina tesla aplicado à geração descentralizada por fontes renováveis”, 148p. Dissertação (Mestrado) - Universidade Federal do Ceará, Centro de Tecnologia. Depto. Engenharia Mecânica e de Produção. Fortaleza.

Da Silva, JP (2017) Apostila de Eletrônica e Potência. Instituto Federal de Educação Ciência e Tecnologia- Rio Grande do Norte. Available at: <http://professorcesarcosta.com.br/upload/imagens_upload/Apostila-Eletronica-Potencia-IFRN.pdf.> (accessed 17 June 2021).

Delgado, MS (2014) “Proteção de Instalações de Produção Elétricas Centralizadas e Descentralizadas”, 1a ed. Portugal: Publindústria.

Fernandes, JD, Dantas, ERB, Nóbrega Barbosa, J, Alves Barbosa, E (2011) “Estudo de impactos ambientais em solos: o caso da reciclagem de baterias automotivas usadas, tipo chumbo-ácido”. Revista Brasileira de Gestão e Desenvolvimento Regional, Taubaté, SP, Brasil, v. 7, n. 1, p. 231-255.

Freitas, GA (2017) “Gerador solar com coletor de calhas parabólicas e turbinas com potências de 01 a 100 kw”, Patente: WO 2017054068 A1.

Gaspar, PMT (2015) “Estudo da Turbina de Tesla visando a sua aplicação em sistemas de geração de energia elétrica descentralizada”, 199p. Dissertação de Mestrado - Instituto Superior de Engenharia de Lisboa (ISEL), Portugal.

Harris, W (2021) “How the Tesla Turbine Works”. Available at: <https://auto.howstuffworks.com/tesla-turbine2.htm> (accessed 02 January 2021).

Hinrichs, RA, Kleinbach, M and Reis, LB (2015) “Energia e meio ambiente”, 4a ed. São Paulo: Pioneira Thomson Learning.

Ho-Yan, BP (2011) “Tesla Turbine for Pico-Hydro Applications”. Guelph Engineering Journal, Vol. 4, pp. 1-8.

Portal Energia (2012). “Vantagens do Protocolo de Quioto”. Available at: <http://www.portal-energia.com/protocolo-de-quioto/> (accessed 02 April 2021).

Peter, A, Dimitry, G and Daniel, MK (2015) “Decentralized energy systems for clean electricity access”, Nature Climate Change, 5, pp. 305–314.

Ramos, ATM (2015) “Entenda quais são os benefícios da Geração de Energia Descentralizada”. Available at: <http://engenhariae.com.br/meio-ambiente/entenda-quais-sao-os-beneficios-da-geracao-de-energia-descentralizada/> (accessed 13 May 2021).

Reis, LB (2011) “Geração de energia elétrica” – 2th ed. Barueri: Manole.

Rocha, GVB, Guimarães, LNF, Placco GG (2013) “Otimização de Materiais para as partes que compõe uma turbina tipo tesla. International Nuclear Atlantic Conference (INAC). Salvador – Bahia.

Sbtroy (2021) “Build a 15,000 rpm Tesla Turbine using hard drive platters. Instructables”. Available at: <http://www.instructables.com/id/Build-a-15,000-rpm-Tesla-Turbine-using-hard-drive-/> (accessed 13 January 2021).

Schulza, J, Scharmer, VM and Zaeh, MF (2020) “Energy self-sufficient manufacturing systems – integration of renewable and decentralized energy generation systems”, Procedia Manufacturing, 43, pp. 40-47.

Schmidt, DD (2002) “Biomass Boundary Layer Turbine Power System”, California Energy Commission, State of California. Available at: <https://doi.org/10.1115/IJPGC2002-26035>.

Wen, HL, Wai, SH, Ming, YL, Haslenda , H, Jeng, SL, Jiří , JK and Angel, XYM (2019) Development and optimization of an integrated energy network with centralized and decentralized energy systems using mathematical modelling approach”, Energy, 183, 15 september, pp. 617-629.

Wadim, S (2019) “Social Impacts of Smart Grids the Future of Smart Grids and Energy Market Design”, 342p, 1th ed. Elsevier.

Warren, R (1991). “Tesla Turbomachinery”. Conference Proceedings of the IV International Tesla Symposium. Serbian Academy of Sciences and Arts, Belgrade, Yugoslavia. Available at: <https://www.gyroscope.com/images/teslaturbine/TeslaTurboMachinery.pdf, 1991. (accessed 08 February 2021).

Yue, Z, Meng, C, Jianzhong, Wu and Chao, L (2019) “Decentralized Control of Industrial Heating Loads for Providing Multiple Levels and Types of Primary Frequency Control Service”, Energy Procedia, 158, February, pp. 3138-3143.

Downloads

Published

10-01-2022

How to Cite

D’ercole, A. de F. ., Silva, G. T. M. ., dos Santos, J. G. B., & Carvalho, E. R. (2022). Dynamo in tesla turbine, based on recyclable materials, for decentralized energy generation and recharge batteries: system evaluations. Latin American Journal of Energy Research, 8(2), 14–26. https://doi.org/10.21712/lajer.2021.v8.n2.p14-26

Issue

Section

Engenharias