Uma comparação entre tecnologias de geração de energia solar fotovoltaica e heliotérmica
DOI:
https://doi.org/10.21712/lajer.2024.v11.n2.p212-222Palavras-chave:
energia solar, custo nivelado de eletricidade, Geração de energia, sustentabilidadeResumo
Este artigo teve como objetivo comparar as tecnologias de geração de energia elétrica solar fotovoltaica (PV) e solar térmica concentrada (CSP), como critério preliminar de escolha deste tipo de fonte de geração de energia elétrica renovável. Foram apresentadas as particularidades, características técnicas e econômicas, formas de funcionamento e demais características de cada uma. Como forma de determinar em quais situações os sistemas PV e CSP apresentam maior viabilidade de implantação, foram realizadas análises da geração de eletricidade em cenários distintos, tanto atuais quanto futuros, fazendo-se uso da métrica do custo nivelado de eletricidade (LCOE), do fator de capacidade, da área necessária para instalação dentre outros. Os resultados obtidos demonstraram que as vantagens da geração PV são: o custo menor do LCOE, geração de energia com radiação direta e difusa, modularidade e simplicidade de instalação e geração de energia após sua instalação. Por outro lado, a tecnologia CSP possui como principais diferenciais, um maior fator de capacidade e consequente armazenamento de energia, a possibilidade de operação de forma híbrida. Assim, foi observado que, a escolha do tipo de tecnologia de geração de energia elétrica solar dependerá de diversos fatores além daqueles obtidos mediante a métrica do custo nivelado de eletricidade.
Downloads
Referências
Alami, A.H., Olabi, A.G., Mdallal, A., Rezk, A., Radwan, A., Rahman, S.M.A., Shah, S.K., Abdelkareem, M.A., 2023. Concentrating solar power (CSP) technologies: Status and analysis. International Journal of Thermofluids 18, 100340. https://doi.org/10.1016/j.ijft.2023.100340
Awan, A.B., Zubair, M., Praveen, R.P., Bhatti, A.R., 2019. Design and comparative analysis of photovoltaic and parabolic trough based CSP plants. Solar Energy 183, 551–565. https://doi.org/10.1016/j.solener.2019.03.037
Baharum, F., Hanif Hassan, M., Dzulkarnaen Sudirman, M., Nasrun Mohd Nawi, M., Halipah Ibrahim, S., 2018. A Comparative Study of Levelized Cost of Electricity Between Photovoltaic and Concentrated Solar Powered Power Plants in Malaysia. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage 50, 134–145.
Bayeh, C.Z., Moubayed, N., 2014. Comparison between PV farms, solar chimneys and CSP towers in Lebanon: Influence of temperature and solar irradiance on the output power, in: International Conference on Renewable Energies for Developing Countries 2014. IEEE, pp. 211–216. https://doi.org/10.1109/REDEC.2014.7038558
Bellmann, P., Wolfertstetter, F., Conceição, R., Silva, H.G., 2020. Comparative modeling of optical soiling losses for CSP and PV energy systems. Solar Energy 197, 229–237. https://doi.org/10.1016/j.solener.2019.12.045
Breeze, P., 2019. Solar Power, in: Power Generation Technologies. Elsevier, pp. 293–321. https://doi.org/10.1016/B978-0-08-102631-1.00013-4
Castro, G.M., 2015. Avaliação do valor da energia proveniente de usinas heliotérmicas com armazenamento no âmbito do sistema interligado nacional. UFRJ, Rio de Janeiro.
Corrêa, L., Cário, S., 2022. O carbon lock-in e as energias eólica e solar fotovoltaica no Brasil no século XXI. A Economia em Revista - AERE 30. https://doi.org/10.4025/econrev.v30i1.59587
Desideri, U., Campana, P.E., 2014. Analysis and comparison between a concentrating solar and a photovoltaic power plant. Appl Energy 113, 422–433. https://doi.org/10.1016/j.apenergy.2013.07.046
Faraz, T., 2012. Benefits of Concentrating Solar Power over Solar Photovoltaic for Power Generation in Bangladesh, in: IEEE (Ed.), 2nd International Conference on the Developments in Renewable Energy Technology.
Frontin, S.O., Fonseca, A., Gilmanova, A., Ardito, A., Carvalho, D.P., Gori, G., Gabetta, G., Buiatti, G.M., 2017. Usina Fotovoltaica Jaíba Solar: planejamento e engenharia. USP, São Paulo.
Galembeck, F., 2022. Energia: resolver problemas, explorar: demandas atuais de aumento na produção de energia de fontes renováveis criam grandes oportunidades para o Brasil. Cienc Cult 74. https://doi.org/10.5935/2317-6660.20220059
Goldemberg, J., Lucon, O., 2012. Energia, Meio Ambiente e Desenvolvimento, 3 ed. ed. USP, São Paulo.
Hernández-Moro, J., Martínez-Duart, J.M., 2013. Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution. Renewable and Sustainable Energy Reviews 20, 119–132. https://doi.org/10.1016/j.rser.2012.11.082
IEA, 2022. Snapshot of Global PV Markets - 2022. International Energy Agency.
Ju, X., Xu, C., Hu, Y., Han, X., Wei, G., Du, X., 2017. A review on the development of photovoltaic/concentrated solar power (PV-CSP) hybrid systems. Solar Energy Materials and Solar Cells 161, 305–327. https://doi.org/10.1016/j.solmat.2016.12.004
Kalogirou, S.A., 2013. Solar Energy Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-374501-9.X0001-5
Kost, C., Müller, P., Sepúlveda Schweiger, J., Fluri, V., Thomsen, J., 2024. Levelized Cost of Electricity Renewable Energy Technologies.
Maranhão, I.M., 2014. Estudo sobre a tecnologia heliotérmica e sua viabilidade no Brasil. (Trabalho de Comclusão de Curso). UNB, Brasilia.
Masson, G., Jäger-Waldau, A., Kaizuka, I., Lindahl, J., Donoso, J., de l’Epine, M., 2024. A Snapshot of the Global PV Market, in: 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC). IEEE, pp. 0566–0568. https://doi.org/10.1109/PVSC57443.2024.10749131
Müller-Steinhagen, H., 2013. Concentrating solar thermal power. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, 20110433. https://doi.org/10.1098/rsta.2011.0433
Nogueira, R.M., 2017. Viabilidade econômica da energia heliotérmica em Santa Catarina. (Trabalho de Conclusão de Curso). UFSC, Florianópolis.
Obeidat, F., 2018. A comprehensive review of future photovoltaic systems. Solar Energy 163, 545–551. https://doi.org/10.1016/j.solener.2018.01.050
Okafor, Kennedy Chinedu, Onwusuru, Ijeoma Madonna, Okafor, K C, Onwusuru, I M, Okoro, I.C., Onwusuru, C.O., 2013. Solar Satellite: A Green Energy Infrastructure for Power Challenged Environments, a Case for Solar Cell I-V Behaviour, African Journal of Computing & ICT.
Parrado, C., Girard, A., Simon, F., Fuentealba, E., 2016. 2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile. Energy 94, 422–430. https://doi.org/10.1016/j.energy.2015.11.015
Răboacă, M.S., Badea, G., Enache, A., Filote, C., Răsoi, G., Rata, M., Lavric, A., Felseghi, R.-A., 2019. Concentrating Solar Power Technologies. Energies (Basel) 12, 1048. https://doi.org/10.3390/en12061048
Raimo, P.A., 2018. A disseminação dos sistemas fotovoltaicos e a qualificação profissional. USP, São Paulo.
REN21, 2024. Renewables 2024 global status report. Paris.
Roni, Md.M., Hoque, I.U., Ahmed, T., 2019. Comparative Study of Levelized Cost of Electricity (LCOE) for Concentrating Solar Power (CSP) and Photovoltaic (PV) Plant in the Southeastern Region of Bangladesh, in: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, pp. 1–6. https://doi.org/10.1109/ECACE.2019.8679173
Santos, T.F. dos, Soares, M.V., Junior, A.C., 2021. Análise comparativa entre tecnologias de geração de energia elétrica solar fotovoltaica e heliotérmica. . Disciplina de Energias Renováveis e Alternativas.
Shakeel, M.R., Mokheimer, E.M.A., 2022. A techno-economic evaluation of utility scale solar power generation. Energy 261, 125170. https://doi.org/10.1016/j.energy.2022.125170
Solar Paces, 2024. CSP Projects Around the World [WWW Document]. https://www.solarpaces.org/worldwide-csp/csp-projects-around-the-world/.
Soria, R., 2011. Cenários de geração de eletricidade a partir de geradores heliotérmicos no Brasil: a influência do armazenamento de calor e da hibridização. UFRJ, Rio de Janeiro.
Urbanetz, J., Zomer, C.D., Rüther, R., 2011. Compromises between form and function in grid-connected, building-integrated photovoltaics (BIPV) at low-latitude sites. Build Environ 46, 2107–2113. https://doi.org/10.1016/j.buildenv.2011.04.024
Vieira, A.C.F., 2021. Energias renováveis e sua eficiência na nova economia energética no Brasil. Revista Brasileira de Gestão Ambiental e Sustentabilidade 8, 211–223. https://doi.org/10.21438/rbgas(2021)081813
World Bank, 2021. Concentrating Solar Power: Clean Power on Demand 24/7. Washington DC.
Zomer, C.D., 2014. Método de estimativa da influência do sombreamento parcial na geração energética de sistemas solares fotovoltaicos integrados em edificações. UFSC, Florianópolis.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Latin American Journal of Energy Research

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.