Different forms of hydrogen production: a review and future perspectives

Authors

  • Grazielle Cristina de Araujo Universidade Estadual do Oeste do Paraná
  • Jair Universidade Estadual do Oeste do Paraná
  • Loreci Universidade Estadual do Oeste do Paraná
  • João Felipe Peixoto Marques Universidade Estadual do Oeste do Paraná
  • Rafaela Lazzarin Universidade Estadual do Oeste do Paraná
  • Allex Julio Sakata Universidade Estadual do Oeste do Paraná

DOI:

https://doi.org/10.21712/lajer.2021.v8.n2.p49-58

Keywords:

Hidrogênio verde, biohidrogênio, biocombustível, fontes renováveis, energia limpa

Abstract

There was a significant increase in the concern with climate issues, among them highlighted as the derivation of greenhouse gases from the burning fossil fuels, leading several research centers and researchers to seek new sources of less polluting energy, independent of the burn-based matrix of fuels. In this context, the present work has as main presenter a literature review, perspective and comparisons regarding the use of hydrogen as a clean energy source, presenting three main ways of obtaining it: a) through electrolysis using renewable sources; b) biohydrogen production, based on the photosynthesis of plants and algae; c) production through biodigesters.

Downloads

Download data is not yet available.

References

Abanades, S, Kimura, H and Otsuka, H (2015) ‘A drop‐tube particle‐ entrained flow solar reactor applied to thermal methane splitting for hydrogen production’, Fuel, v. 153, pp. 56‐66. <https://doi.org/10.1016/j.fuel.2015.02.103>.

Alves, H, Bley Junior, C, Niklevicz, R, Frigo, E, Frigo, M and Coimbra-Araujo, C (2013) ‘Overview of hydrogen production Technologies from biogas and the applications in fuel cells’, International Journal of Hydrogen Energy, vol. 38, pp. 5215-5225. <https://doi.org/10.1016 /j.ijhydene.2013.02.057>.

Ashafiri, M, Pfeifer, C, Proll, T and Hofbauer, H (2008) ‘Experimental study of model biogas catalytic steam reforming impact of sulfur on the deactivation and regeneration of Ni-based

catalysts’, Energy & Fuels, vol. 22, pp. 4190–4195. <https://doi.org/10.1021/ef8000828>.

Balat, H and Kirtay, E (2010) ‘Hydrogen from biomass – presente scenario and future prospects’, International Journal of Hydrogen Energy, vol. 35, pp. 7416–7426. <https://doi.org/ 10.1016/j.ijhydene.2010.04.137>.

Benemann, JR (1996) ‘Hydrogen biotechnology: progress and prospects’, Nature Biotechnology, vol. 14, pp. 1101-103. <https://doi.org/10.1038/nbt0996-1101>.

Benemann, JR (1997) ‘Feasibility analysis of photobiological hydrogen production’, International Journal of Hydrogen Energy, vol. 22, pp. 979-988. <https://doi.org/10.1016/S0360-3199(96)00189-9>.

Bilgen, E (2001) ‘Solar hydrogen from photovoltaic‐electrolyzer systems’, Energy Conversion and Management, vol. 42, n. 9, pp. 1047‐105. <https://doi.org/10.1016/S0196-8904(00)00131-X>.

Carvalho, RM, Vargas, JVC, Ramos, LP, Marino, CEB and Torres, JCL (2011) ‘Microalgae biodiesel via in situ methanolysis’, Journal of Chemical Technology and Biotechnology, vol. 86, pp. 1418–27. <https://doi.org/10.1002/JCTB.2652>.

Cheong , DY and Hansen, CL (2006) ‘Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge’, Applied Microbiology and Biotechnology, vol. 72, pp. 635-43. <https://doi.org /10.1007/s00253-006-0313-x>.

Connelly, E (2019), ‘Office of energy efficiency & renewable energy’, U.S. Departament of energy, Boston, viewed 12 August 2021. Available at: <https://www.epa.gov/sites/default/files/2019-03/documents/session2_connelly.pdf>

Das, D, Khanna, N and Veziroglu, TN (2008) ‘Recent developments in biological hydrogen production processes’, Chemical Industry and Chemical Engineering Quarterly, vol. 14, pp. 57-67. <https://doi.org/10.2298/CICEQ0802057D>.

Das, D and Veziroglu, T (2008) ‘Advances in biological hydrogen production processes’, International Journal of Hydrogen Energy, vol. 33, n. 21, pp. 6046-6057. <https://doi.org/10.1016/j.ijhydene.2008.07.098>.

Das, D and Veziroglu, TN (2001) ‘Hydrogen production by biological processes: a survey of literature’, International Journal of Hydrogen Energy, vol. 26, pp. 13–28. <https://doi.org/10.1016/S0360-3199(00)00058-6>.

Fachagentur, NR (2010) ‘Leitfaden Biogas: Von der Gewinnung zur Nutzung, F.N.R., 5th edn, Gülzow.

Götz, M, Lefebvre, J, Mörs, F, Koch, AM, Graf, F, Bajohr, S, Reimert, R and Kolb, T (2016) ‘Renewable power‐to‐gas: a technological and economic review’, Renew Energy, vol. 85, pp. 1371‐1390. <https://doi.org/10.1016/j.renene.2015.07.066>.

Hamann, CH, Hamnett, A and Vielstich, W. Electrochemistry, 2nd edn, Wiley-Vch, New York.

Hosseini SE (2019) ‘Development of solar energy towards solar city Utopia’, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 41, n. 23, pp. 2868-2881. <https://doi.org/10.1080/15567036.2019.1576803>.

IEA. International Energy Agency. CO2 Emissions from Fuel Combustion 2018. IEA, Paris.<10.1787/co2_fuel-2018-em>.

Kapdan, IK and Kargi, F (2006) ‘Bio-hydrogen production from waste materials’, Enzyme and Microbial

Technology, pp. 569-82. < https://doi.org/10.1016/j.enzmictec.2005.09.015>.

Kotay, SM and Das, D (2008) ‘Biohydrogen as a renewable energy resource – prospects and potentials’, International Journal of Hydrogen Energy, vol. 33, pp. 258–63. <https://doi.org/10.1016/j.ijhydene.2007.07.031>.

Li, J, Li, B, Zhu, G, Ren, N, Bo, L and He, J (2007) ‘Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR)’, International Journal of Hydrogen Energy, vol. 32, pp. 3274–83. < https://doi.org/10.1016/j.ijhydene.2007.04.023>.

Markandya A and Wilkinson P (2007) ‘Electricity generation and health’, The Lancet, vol. 370, n. 9591, pp. 979‐990.

Ming, L, Nanqi, R and Aijie, W (2002) ‘Hydrogen production efficiency of mixed-culturing bacteria with non-immobilized technology in a hydrogen-producing bioreactor’, VII Latin American workshop and symposium on anaerobic digestion, pp. 22–25.

Muñoz, MN, 2018, Desenvolvimento, modelagem e simulação de um sistema incinerador de resíduos sólidos com emissões tratadas por microalgas. Dissertação de mestrado, Universidade Federal do Paraná, Curitiba.

Reitz, W (2007) ‘Handbook of Fuel Cells: fundamentals, technology and applications, vol.1’, Materials and Manufacturing Processes, vol. 22, pp. 788. <https://doi.org/10.1080/10426910701416310>.

Romm JJ (2004) ‘The Hype About Hydrogen: Fact and Fiction in the Race to save the Climate‛, 1nd ed., Island Press, Washington, DC.

Sacramento, EM (2007) Um Sistema de Energia a Hidrogênio-Solar-Eólico para o Estado do Ceará. Dissertação de Mestrado, Universidade Estadual do Ceará, Fortaleza.

Sacramento, EM, Lima LC and Carvalho, PC (2006) ‘Estado da arte da tecnologia em um sistema hidrogênio-solar-eólico’, Tecnologia (UNIFOR), vol. 27, pp. 150-162. <https://doi.org/10.5020/23180730.2006.V27.2.%P>.

Santos, DMF and Figueiredo, JL (2013) ‘Hydrogen production by alkaline water electrolysis’, Chemical Nova, vol. 36, pp. 1176-1193. <https://doi.org/10.1590/S0100-40422013000800017>.

Satyanarayana, KG, Mariano, AB and Vargas, JVC (2011) ‘Uma revisão sobre microalgas, uma fonte versátil de energia e materiais sustentáveis’, International Journal of Energy Research, vol. 35, pp. 291–311. <https://doi.org/10.1002/er.1695>.

Skjanes, K, Lindblad, P and Muller, J (2007) ‘Bio CO2—a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products’, Biomolecular Engineering, vol. 24, pp. 405–13. <https://doi.org/10.1016/j.bioeng.2007.06.002>.

Steward D, Ramsden T and Zuboy J (2008) ‘H2: A Production Model, Version 2 User Guide’, National Renewable Energy Laboratory, Golden, CO, United States.

Tamagnini, P, Axelsson, R, Lindberg, P, Oxelfelt, F, Wünschiers, R and Lindblad, P (2002) ‘Hydrogenases and hydrogen metabolism of cyanobacteria’, Microbiology and Molecular Biology Reviews, vol. 66, pp. 1-20.: <https://doi.org/10.1128/MMBR.66.1.1-20.2002>.

Tamagnini, P, Leitão, E and Oliveira, P (2003) ‘Biohidrogênio: produção de H2 utilizando cianobactérias’, Boletim de Biotecnologia: Energias renováveis e limpas de origem biológica, vol. 75, pp. 3–6.

Tebibel, H, Khellaf, A, Menia, S and Nouicer, I (2017) ‘Design, modelling and optimal power and hydrogen management strategy of an off grid PV system for hydrogen production using methanol electrolysis’, International Journal of Hydrogen Energy, vol. 42, n. 22, pp. 14950‐14967. <https://doi.org/10.1016/j.ijhydene.2017.05.010>.

Teixeira, EC, Feltes, S and Santana, ERR (2008) ‘Estudo das emissões de fontes móveis na região metropolitana de Porto Alegre, Rio Grande do Sul’, Química Nova, vol. 31, pp. 244. <https://doi.org/10.1590/S0100-40422008000200010>.

Ursua, A, Gandia, LM and Sanchis, P (2012) ‘Hydrogen production from water electrolysis: current status and future trends’, Proceedings of the IEEE, v. 100, n. 2, pp. 410-426. Available at: <https://doi.org/10.1109/JPROC.2011.2156750>.

Vargas, RA., Chiba, R., Franco, EG and Seo, ESM (2006) ‘Hidrogênio:o vetor energético do futuro?’, Centro de Ciência e Tecnologia de Materiais (CCTM), Instituto de Pesquisas Energéticas e Nucleares (IPEN).

Wang, S, Lu, A and Zhong, CJ (2021) ‘Hydrogen production from water electrolysis: role of catalysts’, Nano Convergence 8, 4 (2021). <https://doi.org/10.1186/s40580-021-00254-x>.

Weiland, P (2010) ‘Biogas production: current state and perspectives’, Applied Microbiology and Biotechnology, vol. 85, pp 849-860. <https://doi.org/10.1007/s00253-009-2246-7>.

Wu, K and Chang, JS (2007) ‘Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix’, Process Biochemistry, vol. 42, pp.279–84. <https://doi.org/10.1016/j.procbio.2006.07.021>.

Zhi, X, Yang, H, Yuan, Z and Shen, J (2008) ‘Bio-hydrogen production of anaerobic bacteria in reverse micellar media’, International Journal of Hydrogen Energy, vol. 33, pp. 4747–54. <https://doi.org/10.1016/j.ijhydene.2008.06.047>.

Downloads

Published

10-01-2022

How to Cite

Cristina de Araujo, G., Antonio Cruz Siqueira, J., Zanardini, L., Felipe Peixoto Marques, J., Lazzarin, R., & Julio Sakata, A. (2022). Different forms of hydrogen production: a review and future perspectives. Latin American Journal of Energy Research, 8(2), 49–58. https://doi.org/10.21712/lajer.2021.v8.n2.p49-58

Issue

Section

Energias de Baixo Carbono