Reciclagem de baterias de íon-lítio: uma breve revisão sobre os processos, avanços e perspectivas
DOI:
https://doi.org/10.47456/bjpe.v10i1.42817Palavras-chave:
Biometalurgia, Gestão de resíduos, Hidrometalurgia, Indução térmica, PirometalurgiaResumo
Este estudo apresenta uma breve revisão sobre os processos convencionais (pirometalurgia e hidrometalurgia) e alternativos (reciclagem direta, biometalurgia, campo elétrico e por indução térmica) de reciclagem de baterias de íon-Lítio (LIBs). Estes são responsáveis por recuperar materiais valiosos como o lítio, níquel, cobalto, manganês, cobre, alumínio e grafite. Neste trabalho, realizou-se uma pesquisa bibliográfica e documental com a finalidade de obter embasamento teórico consistente para comparar diversas tecnologias de reciclagem de LIBs, a fim de atender a demanda crescente de produção de veículos eletrônicos a bateria (VEBs). Os dados revelam que a reciclagem alternativa é mais eficiente e sustentável quando comparada à convencional. Entretanto, o uso comercial da reciclagem convencional ainda persiste devido ao estabelecimento de tecnologias e infraestrutura em larga escala de produção. Os gargalos tecnológicos associados à reciclagem alternativa precisam ser superados para dar sustentação à cadeia produtiva de LIBs e atender à crescente demanda de VEBs. Estes desafios devem promover o desenvolvimento de tecnologias inovadoras e sustentáveis de reciclagem alinhadas às políticas de gestão de resíduos sólidos e aos padrões internacionais de reciclagem de baterias de lítio.
Downloads
Referências
Bhar, M., Bhattacharjee, U., Yalamanchili, K., & Martha, S. K. (2023). Effective upcycling of waste separator and boosting the electrochemical performance of recycled graphite anode for lithium-ion batteries. Journal of Power Sources, 580, 233403. https://doi.org/10.1016/J.JPOWSOUR.2023.233403 DOI: https://doi.org/10.1016/j.jpowsour.2023.233403
Dong, C., Dong, X., Jiang, Q., Dong, K., & Liu, G. (2018). What is the probability of achieving the carbon dioxide emission targets of the Paris Agreement? Evidence from the top ten emitters. Science of The Total Environment, 622-623, 1294-1303. https://doi.org/10.1016/J.SCITOTENV.2017.12.093 DOI: https://doi.org/10.1016/j.scitotenv.2017.12.093
Du, K., Ang, E. H., Wu, X., & Liu, Y. (2022). Progresses in Sustainable Recycling Technology of Spent Lithium-Ion Batteries. Energy & Environmental Materials, 5(4), 1012-1036. https://doi.org/10.1002/EEM2.12271 DOI: https://doi.org/10.1002/eem2.12271
Feng, C. C., Chang, K. F., Lin, J. X., Lee, T. C., & Lin, S. M. (2022). Toward green transition in the post Paris Agreement era: The case of Taiwan. Energy Policy, 165, 112996. https://doi.org/10.1016/J.ENPOL.2022.112996 DOI: https://doi.org/10.1016/j.enpol.2022.112996
Golmohammadzadeh, R., Faraji, F., & Rashchi, F. (2018). Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation and Recycling, 136, 418-435. https://doi.org/10.1016/J.RESCONREC.2018.04.024 DOI: https://doi.org/10.1016/j.resconrec.2018.04.024
Goodenough, J. B., & Park, K. S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135(4), 1167-1176. https://doi.org/10.1021/JA3091438/ASSET/IMAGES/MEDIUM/JA-2012-091438_0009.GIF DOI: https://doi.org/10.1021/ja3091438
Horeh, N. B., Mousavi, S. M., & Shojaosadati, S. A. (2016). Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. Journal of Power Sources, 320, 257-266. https://doi.org/10.1016/J.JPOWSOUR.2016.04.104 DOI: https://doi.org/10.1016/j.jpowsour.2016.04.104
IEA. (2023). Electric Vehicles.
Jin, S., Mu, D., Lu, Z., Li, R., Liu, Z., Wang, Y., Tian, S., & Dai, C. (2022). A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. Journal of Cleaner Production, 340, 130535. https://doi.org/10.1016/J.JCLEPRO.2022.130535 DOI: https://doi.org/10.1016/j.jclepro.2022.130535
Kader, Z. A., Marshall, A., & Kennedy, J. (2021). A review on sustainable recycling technologies for lithium-ion batteries. Emergent Materials, 4(3), 72-735. https://doi.org/10.1007/S42247-021-00201-W/FIGURES/4 DOI: https://doi.org/10.1007/s42247-021-00201-w
Kasprzak, W., Li, D., Patience, G. S., Sauriol, P., Amaris, H. V., Dolle, M., Gauthier, M., Rousselot, S., Talebi-Esfandarani, M., Bibienne, T., Sun, X., Liu, Y., & Liang, G. (2017). Using induction melting to make lithium-ion battery material. Advanced Materials & Processes, 175(8), 16-23. DOI: https://doi.org/10.31399/asm.amp.2017-08.p016
Khabbazan, M. M., & von Hirschhausen, C. (2021). The implication of the Paris targets for the Middle East through different cooperation options. Energy Economics, 104, 105629. https://doi.org/10.1016/J.ENECO.2021.105629 DOI: https://doi.org/10.1016/j.eneco.2021.105629
Kim, S., Bang, J., Yoo, J., Shin, Y., Bae, J., Jeong, J., Kim, K., Dong, P., & Kwon, K. (2021). A comprehensive review on the pretreatment process in lithium-ion battery recycling. Journal of Cleaner Production, 294, 126329. https://doi.org/10.1016/J.JCLEPRO.2021.126329 DOI: https://doi.org/10.1016/j.jclepro.2021.126329
Kriston, A., Kersys, A., Antonelli, A., Ripplinger, S., Holmstrom, S., Trischler, S., Döring, H., & Pfrang, A. (2020). Initiation of thermal runaway in Lithium-ion cells by inductive heating. Journal of Power Sources, 454, 227914. https://doi.org/10.1016/J.JPOWSOUR.2020.227914 DOI: https://doi.org/10.1016/j.jpowsour.2020.227914
Lai, X., Chen, Q., Tang, X., Zhou, Y., Gao, F., Guo, Y., Bhagat, R., & Zheng, Y. (2022). Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. ETransportation, 12, 100169. https://doi.org/10.1016/J.ETRAN.2022.100169 DOI: https://doi.org/10.1016/j.etran.2022.100169
Leal, V. M., Ribeiro, J. S., Coelho, E. L. D., & Freitas, M. B. J. G. (2023). Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. Journal of Energy Chemistry, 79, 118-134. https://doi.org/10.1016/J.JECHEM.2022.08.005 DOI: https://doi.org/10.1016/j.jechem.2022.08.005
Li, J., Li, L., Yang, R., & Jiao, J. (2023). Assessment of the lifecycle carbon emission and energy consumption of lithium-ion power batteries recycling: A systematic review and meta-analysis. Journal of Energy Storage, 65, 107306. https://doi.org/10.1016/J.EST.2023.107306 DOI: https://doi.org/10.1016/j.est.2023.107306
Li, L., Zhang, X., Li, M., Chen, R., Wu, F., Amine, K., & Lu, J. (2018). The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies. Electrochemical Energy Reviews 2018 1(4), 461-482. https://doi.org/10.1007/S41918-018-0012-1 DOI: https://doi.org/10.1007/s41918-018-0012-1
Li, P., Luo, S., Zhang, L., Liu, Q., Wang, Y., Lin, Y., Xu, C., Guo, J., Cheali, P., & Xia, X. (2023). Progress, challenges, and prospects of spent lithium-ion batteries recycling: A review. Journal of Energy Chemistry. https://doi.org/10.1016/J.JECHEM.2023.10.012 DOI: https://doi.org/10.1016/j.jechem.2023.10.012
Liao, X., Ye, M., Liang, J., Jian, J., Li, S., Gan, Q., Liu, Z., Mo, Z., Huang, Y., & Sun, S. (2023). Comprehensive insights into the gallic acid assisted bioleaching process for spent LIBs: Relationships among bacterial functional genes, Co(III) reduction and metal dissolution behavior. Journal of Hazardous Materials, 447, 130773. https://doi.org/10.1016/J.JHAZMAT.2023.130773 DOI: https://doi.org/10.1016/j.jhazmat.2023.130773
Liu, C., Lin, J., Cao, H., Zhang, Y., & Sun, Z. (2019). Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. Journal of Cleaner Production, 228, 801-813. https://doi.org/10.1016/J.JCLEPRO.2019.04.304 DOI: https://doi.org/10.1016/j.jclepro.2019.04.304
Lv, H., Huang, H., Huang, C., Gao, Q., Yang, Z., & Zhang, W. (2021). Electric field driven de-lithiation: A strategy towards comprehensive and efficient recycling of electrode materials from spent lithium ion batteries. Applied Catalysis B: Environmental, 283, 119634. https://doi.org/10.1016/J.APCATB.2020.119634 DOI: https://doi.org/10.1016/j.apcatb.2020.119634
Magdalon, I. M. (2021). Valorização das Baterias de Iões Lítio em Fim de Vida de Veículos Elétricos. Instituto Politecnico de Leiria.
Makuza, B., Tian, Q., Guo, X., Chattopadhyay, K., & Yu, D. (2021). Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources, 491, 229622. https://doi.org/10.1016/J.JPOWSOUR.2021.229622 DOI: https://doi.org/10.1016/j.jpowsour.2021.229622
Mantuano, D. P., Espinosa, D. C. R., Wolff, E., Mansur, M. B., & Schwabe, W. K. (2011). Pilhas e baterias portáteis: legislação, processos de reciclagem e perspectivas. Brazilian Journal of Environmental Sciences (RBCIAMB), 21, 1–13.
Mishra, G., Jha, R., Meshram, A., & Singh, K. K. (2022). A review on recycling of lithium-ion batteries to recover critical metals. Journal of Environmental Chemical Engineering, 10(6), 108534. https://doi.org/10.1016/J.JECE.2022.108534 DOI: https://doi.org/10.1016/j.jece.2022.108534
Moazzam, P., Boroumand, Y., Rabiei, P., Baghbaderani, S. S., Mokarian, P., Mohagheghian, F., Mohammed, L. J., & Razmjou, A. (2021). Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. Chemosphere, 277, 130196. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130196 DOI: https://doi.org/10.1016/j.chemosphere.2021.130196
Mossali, E., Picone, N., Gentilini, L., Rodrìguez, O., Pérez, J. M., & Colledani, M. (2020). Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. Journal of Environmental Management, 264, 110500. https://doi.org/10.1016/J.JENVMAN.2020.110500 DOI: https://doi.org/10.1016/j.jenvman.2020.110500
Pang, J., Liu, Z., Hou, W., & Tao, Y. (2023). How does the Paris Agreement affect firm productivity? International evidence. Finance Research Letters, 56, 104150. https://doi.org/10.1016/J.FRL.2023.104150 DOI: https://doi.org/10.1016/j.frl.2023.104150
Pinegar, H., & Smith, Y. R. (2019). Recycling of End-of-Life Lithium Ion Batteries, Part I: Commercial Processes. Journal of Sustainable Metallurgy, 5(3), 402-416. https://doi.org/10.1007/S40831-019-00235-9/FIGURES/8 DOI: https://doi.org/10.1007/s40831-019-00235-9
Rautela, R., Yadav, B. R., & Kumar, S. (2023). A review on technologies for recovery of metals from waste lithium-ion batteries. Journal of Power Sources, 580, 233428. https://doi.org/10.1016/J.JPOWSOUR.2023.233428 DOI: https://doi.org/10.1016/j.jpowsour.2023.233428
Roy, J. J., Cao, B., & Madhavi, S. (2021). A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere, 282, 130944. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130944 DOI: https://doi.org/10.1016/j.chemosphere.2021.130944
Roy, J. J., Madhavi, S., & Cao, B. (2021). Metal extraction from spent lithium-ion batteries (LIBs) at high pulp density by environmentally friendly bioleaching process. Journal of Cleaner Production, 280, 124242. https://doi.org/10.1016/J.JCLEPRO.2020.124242 DOI: https://doi.org/10.1016/j.jclepro.2020.124242
S. Rangarajan, S., Sunddararaj, S. P., Sudhakar, A. V. V., Shiva, C. K., Subramaniam, U., Collins, E. R., & Senjyu, T. (2022). Lithium-Ion Batteries—The Crux of Electric Vehicles with Opportunities and Challenges. Clean Technologies, 4(4), 908-930. https://doi.org/10.3390/CLEANTECHNOL4040056 DOI: https://doi.org/10.3390/cleantechnol4040056
Salman, M., Long, X., Wang, G., & Zha, D. (2022). Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design. Energy Policy, 168, 113128. https://doi.org/10.1016/J.ENPOL.2022.113128 DOI: https://doi.org/10.1016/j.enpol.2022.113128
Silva, N. F. S. F., Ferreira, G. K., Reis, E. P., & Castro, D. E. (2019). A importância da reciclagem na sustentabilidade de carros elétricos. Conexão Ciência (Online), 14(3), 9-18. https://doi.org/10.24862/CCO.V14I3.1044 DOI: https://doi.org/10.24862/cco.v14i3.1044
Singh, J. (2022). The Sustainability Potential of Upcycling. Sustainability, 14(10), 5989. https://doi.org/10.3390/SU14105989 DOI: https://doi.org/10.3390/su14105989
UNEP. (2023). Electric Vehicle Lithium-ion Batteries in Lower- and Middle-income Countries . UNEP - UN Environment Programme.
USGS. (2023). Mineral commodity summaries 2023.
Valorcar. (2019). Guia de Gestão de Resíduios de Baterias e Acumuladores.
Velázquez-Martínez, O., Valio, J., Santasalo-Aarnio, A., Reuter, M., & Serna-Guerrero, R. (2019). A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective. Batteries, 5(4), 68. https://doi.org/10.3390/BATTERIES5040068 DOI: https://doi.org/10.3390/batteries5040068
Wei, G., Liu, Y., Jiao, B., Chang, N., Wu, M., Liu, G., Lin, X., Weng, X. F., Chen, J., Zhang, L., Zhu, C., Wang, G., Xu, P., Di, J., & Li, Q. (2023). Direct recycling of spent Li-ion batteries: Challenges and opportunities toward practical applications. IScience, 26(9), 107676. https://doi.org/10.1016/J.ISCI.2023.107676 DOI: https://doi.org/10.1016/j.isci.2023.107676
Xin, Y., Guo, X., Chen, S., Wang, J., Wu, F., & Xin, B. (2016). Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. Journal of Cleaner Production, 116, 249-258. https://doi.org/10.1016/J.JCLEPRO.2016.01.001 DOI: https://doi.org/10.1016/j.jclepro.2016.01.001
Yang, K., Zhu, C., Li, J., Meng, B., Zhong, K., Huang, W., Yu, J., & Fang, Z. (2023). Electric field-assisted leaching of valuable metals from spent lithium-ion batteries in a mixture of acetic acid and ascorbic acid. Hydrometallurgy, 221, 106152. https://doi.org/10.1016/J.HYDROMET.2023.106152 DOI: https://doi.org/10.1016/j.hydromet.2023.106152
Yu, W., Guo, Y., Xu, S., Yang, Y., Zhao, Y., & Zhang, J. (2023). Comprehensive recycling of lithium-ion batteries: Fundamentals, pretreatment, and perspectives. Energy Storage Materials, 54, 172-220. https://doi.org/10.1016/J.ENSM.2022.10.033 DOI: https://doi.org/10.1016/j.ensm.2022.10.033
Zhang, G., Yuan, X., Tay, C. Y., He, Y., Wang, H., & Duan, C. (2023). Selective recycling of lithium from spent lithium-ion batteries by carbothermal reduction combined with multistage leaching. Separation and Purification Technology, 314, 123555. https://doi.org/10.1016/J.SEPPUR.2023.123555 DOI: https://doi.org/10.1016/j.seppur.2023.123555
Zhang, N., Xu, Z., Deng, W., & Wang, X. (2022). Recycling and Upcycling Spent LIB Cathodes: A Comprehensive Review. Electrochemical Energy Reviews, 5(1), 1-38. https://doi.org/10.1007/S41918-022-00154-6 DOI: https://doi.org/10.1007/s41918-022-00154-6
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Brazilian Journal of Production Engineering
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Atribuição 4.0 internacional CC BY 4.0 Deed
Esta licença permite que outros remixem, adaptem e desenvolvam seu trabalho não comercialmente, contanto que eles creditem a você e licenciem suas novas criações sob os mesmos termos.