Segregação em leito de jorro cônico com mistura de areia e compósito de Polietileno/Alumínio
DOI:
https://doi.org/10.47456/bjpe.v10i1.43078Palavras-chave:
Pirólise, mistura binária, Fluidodinâmica computacional, coeficiente de especularidadeResumo
Leito de jorro cônico é uma importante alternativa de reator gás-solido para o processo de pirólise de compósito PEBD/Al, pois proporciona menor queda de pressão e maior turbulência em comparação ao leito fluidizado equivalente. Material inerte é adicionado para promover estabilidade do regime de escoamento e aumentar a taxa de transferência de calor, porém essa prática pode resultar em segregação indesejada. Assim, esta pesquisa aprofunda o conhecimento experimental e computacional acerca da fluidodinâmica ao prever o impacto do coeficiente de especularidade sobre a previsão da concentração de partículas ao longo da coluna cônica do leito de jorro. Análise CFD foi desenvolvida em Software FLUENT 13, aplicando o Modelo Multifásico Granular Euleriano (EGMM), modelo de arraste de Gidaspow e turbulência k-ε disperso. Experimentos apontam baixa segregação, reafirmando o leito de jorro cônico como alternativa para o processo. Inicialmente, o aumento na velocidade do ar tende a aumentar a segregação, contudo níveis ainda mais elevados provocam colisões entre partículas e parede, alterando a trajetória regular e, assim, reduzindo a segregação. Valores de coeficiente de especularidade menores geraram melhores resultados nas simulações CFD, indicando que o sistema apresenta baixo valor de fricção com a parede.
Downloads
Referências
Aguado, R., Alvarez, S., San José, M. J., Olazar, M., & Bilbao, J. (2005). Gas flow distribution modelling in conical spouted beds. Computer Aided Chemical Engineering, 20(C), 613-618. https://doi.org/10.1016/S1570-7946(05)80224-X DOI: https://doi.org/10.1016/S1570-7946(05)80224-X
Ahmadabadi, E. F., Haghshenasfard, M., & Esfahany, M. N. (2020). CFD simulation and experimental validation of nanoparticles fluidization in a conical spouted bed. Chemical Engineering Research and Design, 160, 476-485. https://doi.org/10.1016/J.CHERD.2020.06.018 DOI: https://doi.org/10.1016/j.cherd.2020.06.018
Altzibar, H., Lopez, G., Alvarez, S., San José, M. J., Barona, A., & Olazar, M. (2008). A Draft-Tube Conical Spouted Bed for Drying Fine Particles. Drying Technology, 26(3), 308-314. https://doi.org/10.1080/07373930801898018 DOI: https://doi.org/10.1080/07373930801898018
Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., & Olazar, M. (2014). Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel, 128, 162-169. https://doi.org/10.1016/J.FUEL.2014.02.074 DOI: https://doi.org/10.1016/j.fuel.2014.02.074
Amutio, M., Lopez, G., Aguado, R., Artetxe, M., Bilbao, J., & Olazar, M. (2011). Effect of Vacuum on Lignocellulosic Biomass Flash Pyrolysis in a Conical Spouted Bed Reactor. Energy and Fuels, 25(9), 3950-3960. https://doi.org/10.1021/EF200712H DOI: https://doi.org/10.1021/ef200712h
Amutio, M., Lopez, G., Artetxe, M., Elordi, G., Olazar, M., & Bilbao, J. (2012). Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resources, Conservation and Recycling, 59, 23-31. https://doi.org/10.1016/J.RESCONREC.2011.04.002 DOI: https://doi.org/10.1016/j.resconrec.2011.04.002
Arabiourrutia, M., Elordi, G., Lopez, G., Borsella, E., Bilbao, J., & Olazar, M. (2012). Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 94, 230-237. https://doi.org/10.1016/J.JAAP.2011.12.012 DOI: https://doi.org/10.1016/j.jaap.2011.12.012
Arabiourrutia, M., Elordi, G., Olazar, M., & Bilbao, J. (2017). Pyrolysis of Polyolefins in a Conical Spouted Bed Reactor: A Way to Obtain Valuable Products. Em Pyrolysis. InTech. https://doi.org/10.5772/67706 DOI: https://doi.org/10.5772/67706
Bacelos, M. S., & Freire, J. T. (2005). Stability of Spouting Regimes in Conical Spouted Beds with Inert Particle Mixtures. Industrial and Engineering Chemistry Research, 45(2), 808-817. https://doi.org/10.1021/IE050633S DOI: https://doi.org/10.1021/ie050633s
Bacelos, M. S., Passos, M. L., & Freire, J. T. (2008). Characteristics of flow in wet conical spouted beds of unequal-sized spherical Particles. Brazilian Journal of Chemical Engineering, 25(1), 27-38. https://doi.org/10.1590/S0104-66322008000100005 DOI: https://doi.org/10.1590/S0104-66322008000100005
Bacelos, M. S., Spitzner Neto, P. I., Silveira, A. M., & Freire, J. T. (2005). Analysis of Fluid Dynamics Behavior of Conical Spouted Bed in Presence of Pastes. Drying Technology, 23(3), 427-453. https://doi.org/10.1081/DRT-200054116 DOI: https://doi.org/10.1081/DRT-200054116
Barrozo, M. A. S., Borel, L. D. M. S., Lira, T. S., & Ataíde, C. H. (2019a). Fluid dynamics analysis and pyrolysis of brewer’s spent grain in a spouted bed reactor. Particuology, 42, 199-207. https://doi.org/10.1016/j.partic.2018.06.001
Barrozo, M. A. S., Borel, L. D. M. S., Lira, T. S., & Ataíde, C. H. (2019b). Fluid dynamics analysis and pyrolysis of brewer’s spent grain in a spouted bed reactor. Particuology, 42, 199-207. https://doi.org/10.1016/J.PARTIC.2018.06.001 DOI: https://doi.org/10.1016/j.partic.2018.06.001
Cloete, J. H., Cloete, S., Radl, S., & Amini, S. (2016). Evaluation of wall friction models for riser flow. Powder Technology, 303, 156-167. https://doi.org/10.1016/J.POWTEC.2016.07.009 DOI: https://doi.org/10.1016/j.powtec.2016.07.009
Epstein, N., & Grace, J. R. (2010). Spouted and spout-fluid beds: Fundamentals and applications. Spouted and Spout-Fluid Beds: Fundamentals and Applications, 9780521517973, 1-340. https://doi.org/10.1017/CBO9780511777936 DOI: https://doi.org/10.1017/CBO9780511777936.002
Geldart, D. (1973). Types of gas fluidization. Powder Technology, 7(5), 285-292. https://doi.org/10.1016/0032-5910(73)80037-3 DOI: https://doi.org/10.1016/0032-5910(73)80037-3
Gidaspow, D., Bezburuah, R., & Ding, J. (1991). Hydrodynamics of circulating fluidized beds: Kinetic theory approach. https://www.osti.gov/biblio/5896246
Hosseini, S. H., Ahmadi, G., Saeedi Razavi, B., & Zhong, W. (2010). Computational fluid dynamic simulation of hydrodynamic behavior in a two-dimensional conical spouted bed. Energy and Fuels, 24(11), 6086-6098. https://doi.org/10.1021/EF100612R DOI: https://doi.org/10.1021/ef100612r
I.D. Burdett, R.S. Eisinger, P. Cai, & K.H. Lee. (2001). Gas-phase fluidization technology for production of polyolefins, in: Fluid. X. United Engineering Foundation, 39-52.
J. San Jose, M., Olazar, M., J. Penas, F., & Bilbao, J. (2002). Segregation in Conical Spouted Beds with Binary and Ternary Mixtures of Equidensity Spherical Particles. Industrial & Engineering Chemistry Research, 33(7), 1838-1844. https://doi.org/10.1021/ie00031a025
Kiani, M., Rahimi, M. R., Hosseini, S. H., & Ahmadi, G. (2017). Mixing and segregation of solid particles in a conical spouted bed: Effect of particle size and density. Particuology, 32, 132-140. https://doi.org/10.1016/J.PARTIC.2016.06.006 DOI: https://doi.org/10.1016/j.partic.2016.06.006
Kutluoglu, E., Grace, J. R., Murchie, K. W., & Cavanagh, P. H. (1983). Particle segregation in spouted beds. The Canadian Journal of Chemical Engineering, 61(3), 308-316. https://doi.org/10.1002/CJCE.5450610309 DOI: https://doi.org/10.1002/cjce.5450610309
Lan, X., Xu, C., Gao, J., & Al-Dahhan, M. (2012). Influence of solid-phase wall boundary condition on CFD simulation of spouted beds. Chemical Engineering Science, 69(1), 419-430. https://doi.org/10.1016/J.CES.2011.10.064 DOI: https://doi.org/10.1016/j.ces.2011.10.064
Li, T., & Benyahia, S. (2012). Revisiting Johnson and Jackson boundary conditions for granular flows. AIChE Journal, 58(7), 2058-2068. https://doi.org/10.1002/AIC.12728 DOI: https://doi.org/10.1002/aic.12728
Li, T., & Benyahia, S. (2013). Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations. AIChE Journal, 59(10), 3624-3632. https://doi.org/10.1002/AIC.14132 DOI: https://doi.org/10.1002/aic.14132
Libardi, B. P., Xavier, T. P., Lira, T. S., & Barrozo, M. A. S. (2016). Fluid dynamic analysis for pyrolysis of macadamia shell in a conical spouted bed. Powder Technology, 299, 210-216. https://doi.org/10.1016/J.POWTEC.2016.05.034 DOI: https://doi.org/10.1016/j.powtec.2016.05.034
López, G., Olazar, M., Aguado, R., & Bilbao, J. (2010). Continuous pyrolysis of waste tyres in a conical spouted bed reactor. Fuel, 89(8), 1946-1952. https://doi.org/10.1016/J.FUEL.2010.03.029 DOI: https://doi.org/10.1016/j.fuel.2010.03.029
Lun, C. K. K., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics, 140, 223. https://doi.org/10.1017/S0022112084000586 DOI: https://doi.org/10.1017/S0022112084000586
Mahmoodi, B., Hosseini, S. H., Olazar, M., & Altzibar, H. (2017). CFD-DEM simulation of a conical spouted bed with open-sided draft tube containing fine particles. Journal of the Taiwan Institute of Chemical Engineers, 81, 275-287. https://doi.org/10.1016/J.JTICE.2017.09.051 DOI: https://doi.org/10.1016/j.jtice.2017.09.051
Mantegazini, D. Z., Neves, F. L., Xavier, T. P., & Bacelos, M. S. (2021). Review on advanced technologies for aluminum recovery from carton packageswaste using pyrolysis. Brazilian Journal of Production Engineering - BJPE, ISSN-e 2447-5580, (Ejemplar dedicado a: Número Regular (Janeiro - Março)), 7(1), 117-129. https://dialnet.unirioja.es/servlet/articulo?codigo=8698457&info=resumen&idioma=ENG DOI: https://doi.org/10.47456/bjpe.v7i1.34583
Mantegazini, D. Z., Xavier, T. P., & Bacelos, M. S. (2021). Conical spouted beds for waste valorization: Assessment of particle segregation in beds composed of sand and Tetra Pak residues. Sustainable Energy Technologies and Assessments, 47, 101334. https://doi.org/10.1016/J.SETA.2021.101334 DOI: https://doi.org/10.1016/j.seta.2021.101334
Marques, I. I. D. R., Rocha, S. M. S., Lira, T. S., & Bacelos, M. S. (2012). Air-Carton Packaging Waste Flow Dynamics in a Conical Spouted Bed. Procedia Engineering, 42, 70-79. https://doi.org/10.1016/J.PROENG.2012.07.396 DOI: https://doi.org/10.1016/j.proeng.2012.07.396
Mathur, K. B., & Gishler, P. E. (1955). A technique for contacting gases with coarse solid particles. Aiche Journal, 1(2), 157-164. https://doi.org/10.1002/AIC.690010205 DOI: https://doi.org/10.1002/aic.690010205
Melo, J. L. Z., Bacelos, M. S., Pereira, F. A. R., Lira, T. S., & Gidaspow, D. (2016). CFD modeling of conical spouted beds for processing LDPE/Al composite. Chemical Engineering and Processing - Process Intensification, 108, 93–108. https://doi.org/10.1016/J.CEP.2016.07.011 DOI: https://doi.org/10.1016/j.cep.2016.07.011
Niksiar, A., Faramarzi, A. H., & Sohrabi, M. (2015). Kinetic study of polyethylene terephthalate (PET) pyrolysis in a spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 113, 419-425. https://doi.org/10.1016/J.JAAP.2015.03.002 DOI: https://doi.org/10.1016/j.jaap.2015.03.002
Niksiar, A. & Sohrabi, M. (2014). Mathematical modeling of waste plastic pyrolysis in conical spouted beds: Heat, mass, and momentum transport. Journal of Analytical and Applied Pyrolysis, 110, 66-78. https://doi.org/10.1016/J.JAAP.2014.08.005 DOI: https://doi.org/10.1016/j.jaap.2014.08.005
Olazar, M., Alvarez, S., Aguado, R., & San José, M. J. (2003). Spouted Bed Reactors. Chemical Engineering & Technology, 26(8), 845-852. https://doi.org/10.1002/CEAT.200300006 DOI: https://doi.org/10.1002/ceat.200300006
Olazar, M., Arandes, J. M., Zabala, G., Aguayo, A. T., & Bilbao, J. (1997). Design and Operation of a Catalytic Polymerization Reactor in a Dilute Spouted Bed Regime. Industrial & Engineering Chemistry Research, 36(5), 1637-1643. https://doi.org/10.1021/ie960616q DOI: https://doi.org/10.1021/ie960616q
Olazar, M., J. San Jose, M., J. Penas, F., T. Aguayo, A., & Bilbao, J. (2002). Stability and hydrodynamics of conical spouted beds with binary mixtures. Industrial & Engineering Chemistry Research, 32(11), 2826–2834. https://doi.org/10.1021/ie00023a053
Olazar, M., San Jose, M. J., Penas, F. J., Aguayo, A. T., & Bilbao, J. (1993). Stability and hydrodynamics of conical spouted beds with binary mixtures. Industrial & Engineering Chemistry Research, 32(11), 2826-2834. https://doi.org/10.1021/ie00023a053 DOI: https://doi.org/10.1021/ie00023a053
Olazar, M., San José, M. J., Zabala, G., & Bilbao, J. (1994). New reactor in jet spouted bed regime for catalytic polymerizations. Chemical Engineering Science, 49(24), 4579-4588. https://doi.org/10.1016/S0009-2509(05)80042-9 DOI: https://doi.org/10.1016/S0009-2509(05)80042-9
Park, H. C., Lee, B. K., Yoo, H. S., & Choi, H. S. (2017). [TC2015] fast pyrolysis characteristics of biomass in a conical spouted bed reactor. Environmental Progress and Sustainable Energy, 36(3), 685-689. https://doi.org/10.1002/EP.12476 DOI: https://doi.org/10.1002/ep.12476
Patankar, S. V. (1980). Numerical heat transfer and fluid flow. https://doi.org/10.13182/nse81-a20112 DOI: https://doi.org/10.13182/NSE81-A20112
Rovero, G., & Piccinini, N. (2011). Particle mixing and segregation. Em N. Epstein & J. Grace (Orgs.), Spouted and Spout-Fluid Beds: Fundamentals and Applications (1st ed, p. 141–160). Cambridge University Press. https://doi.org/doi:10.1017/CBO9780511777936.009 DOI: https://doi.org/10.1017/CBO9780511777936.009
San José, M. J., Alvarez, S., & López, R. (2018). Drying of industrial sludge waste in a conical spouted bed dryer. Effect of air temperature and air velocity. Drying Technology, 1-11. https://doi.org/10.1080/07373937.2018.1441155 DOI: https://doi.org/10.1080/07373937.2018.1441155
San Jose, M. J., Olazar, M., Penas, F. J., & Bilbao, J. (1994). Segregation in Conical Spouted Beds with Binary and Ternary Mixtures of Equidensity Spherical Particles. Industrial & Engineering Chemistry Research, 33(7), 1838-1844. https://doi.org/10.1021/ie00031a025 DOI: https://doi.org/10.1021/ie00031a025
Santos, K. G., Ferreira, L. V., Santana, R. C., & Barrozo, M. A. S. (2017). CFD Simulation of Spouted Bed Working with a Size Distribution of Sand Particles: Segregation Aspects. Materials Science Forum, 899, 95-100. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.899.95 DOI: https://doi.org/10.4028/www.scientific.net/MSF.899.95
Setarehshenas, N., Hosseini, S. H., Esfahany, M. N., & Ahmadi, G. (2016). Impacts of solid-phase wall boundary condition on CFD simulation of conical spouted beds containing heavy zirconia particles. Journal of the Taiwan Institute of Chemical Engineers, 64, 146-156. https://doi.org/10.1016/J.JTICE.2016.04.005 DOI: https://doi.org/10.1016/j.jtice.2016.04.005
Southpointe, A. (2013). ANSYS Fluent User’s Guide 15.0. ANSYS, Inc., Canonsberg, PA.
Syamlal, M., Rogers, W., & O’Brien, T. J. (1993). MFIX documentation: Theory guide. National Energy Technology Laboratory, Department of Energy, Technical Note DOE/METC-95/1013 and NTIS/DE95000031. DOI: https://doi.org/10.2172/10145548
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Brazilian Journal of Production Engineering
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Atribuição 4.0 internacional CC BY 4.0 Deed
Esta licença permite que outros remixem, adaptem e desenvolvam seu trabalho não comercialmente, contanto que eles creditem a você e licenciem suas novas criações sob os mesmos termos.