Segregación en lecho cónico de chorro con mezcla de arena y compuesto de Polietileno/Aluminio
DOI:
https://doi.org/10.47456/bjpe.v10i1.43078Palabras clave:
Pirólisis, mezcla binaria, Dinámica de fluidos computacional, coeficiente de especularidadResumen
El lecho cónico de chorro es una alternativa importante de reactor gas-sólido para el proceso de pirólisis del compósito PEBD/Al, ya que proporciona una menor caída de presión y una mayor turbulencia en comparación con el lecho fluidizado equivalente. Se añade material inerte para promover la estabilidad del régimen de flujo y aumentar la tasa de transferencia de calor, pero esta práctica puede resultar en segregación no deseada. Por lo tanto, esta investigación profundiza en el conocimiento experimental y computacional de la fluidodinámica al prever el impacto del coeficiente de especularidad en la predicción de la concentración de partículas a lo largo de la columna cónica del lecho eyector. El análisis CFD se desarrolló en el software FLUENT 13, aplicando el Modelo Multifásico Granular Euleriano (EGMM), el modelo de arrastre de Gidaspow y el modelo de turbulencia k-ε disperso. Los experimentos indican una baja segregación, reafirmando el lecho cónico de chorro como alternativa para el proceso. Inicialmente, el aumento en la velocidad del aire tiende a aumentar la segregación, pero niveles aún más altos provocan colisiones entre partículas y la pared, alterando la trayectoria regular y, así, reduciendo la segregación. Valores más bajos del coeficiente de especularidad.
Descargas
Citas
Aguado, R., Alvarez, S., San José, M. J., Olazar, M., & Bilbao, J. (2005). Gas flow distribution modelling in conical spouted beds. Computer Aided Chemical Engineering, 20(C), 613-618. https://doi.org/10.1016/S1570-7946(05)80224-X DOI: https://doi.org/10.1016/S1570-7946(05)80224-X
Ahmadabadi, E. F., Haghshenasfard, M., & Esfahany, M. N. (2020). CFD simulation and experimental validation of nanoparticles fluidization in a conical spouted bed. Chemical Engineering Research and Design, 160, 476-485. https://doi.org/10.1016/J.CHERD.2020.06.018 DOI: https://doi.org/10.1016/j.cherd.2020.06.018
Altzibar, H., Lopez, G., Alvarez, S., San José, M. J., Barona, A., & Olazar, M. (2008). A Draft-Tube Conical Spouted Bed for Drying Fine Particles. Drying Technology, 26(3), 308-314. https://doi.org/10.1080/07373930801898018 DOI: https://doi.org/10.1080/07373930801898018
Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., & Olazar, M. (2014). Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel, 128, 162-169. https://doi.org/10.1016/J.FUEL.2014.02.074 DOI: https://doi.org/10.1016/j.fuel.2014.02.074
Amutio, M., Lopez, G., Aguado, R., Artetxe, M., Bilbao, J., & Olazar, M. (2011). Effect of Vacuum on Lignocellulosic Biomass Flash Pyrolysis in a Conical Spouted Bed Reactor. Energy and Fuels, 25(9), 3950-3960. https://doi.org/10.1021/EF200712H DOI: https://doi.org/10.1021/ef200712h
Amutio, M., Lopez, G., Artetxe, M., Elordi, G., Olazar, M., & Bilbao, J. (2012). Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resources, Conservation and Recycling, 59, 23-31. https://doi.org/10.1016/J.RESCONREC.2011.04.002 DOI: https://doi.org/10.1016/j.resconrec.2011.04.002
Arabiourrutia, M., Elordi, G., Lopez, G., Borsella, E., Bilbao, J., & Olazar, M. (2012). Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 94, 230-237. https://doi.org/10.1016/J.JAAP.2011.12.012 DOI: https://doi.org/10.1016/j.jaap.2011.12.012
Arabiourrutia, M., Elordi, G., Olazar, M., & Bilbao, J. (2017). Pyrolysis of Polyolefins in a Conical Spouted Bed Reactor: A Way to Obtain Valuable Products. Em Pyrolysis. InTech. https://doi.org/10.5772/67706 DOI: https://doi.org/10.5772/67706
Bacelos, M. S., & Freire, J. T. (2005). Stability of Spouting Regimes in Conical Spouted Beds with Inert Particle Mixtures. Industrial and Engineering Chemistry Research, 45(2), 808-817. https://doi.org/10.1021/IE050633S DOI: https://doi.org/10.1021/ie050633s
Bacelos, M. S., Passos, M. L., & Freire, J. T. (2008). Characteristics of flow in wet conical spouted beds of unequal-sized spherical Particles. Brazilian Journal of Chemical Engineering, 25(1), 27-38. https://doi.org/10.1590/S0104-66322008000100005 DOI: https://doi.org/10.1590/S0104-66322008000100005
Bacelos, M. S., Spitzner Neto, P. I., Silveira, A. M., & Freire, J. T. (2005). Analysis of Fluid Dynamics Behavior of Conical Spouted Bed in Presence of Pastes. Drying Technology, 23(3), 427-453. https://doi.org/10.1081/DRT-200054116 DOI: https://doi.org/10.1081/DRT-200054116
Barrozo, M. A. S., Borel, L. D. M. S., Lira, T. S., & Ataíde, C. H. (2019a). Fluid dynamics analysis and pyrolysis of brewer’s spent grain in a spouted bed reactor. Particuology, 42, 199-207. https://doi.org/10.1016/j.partic.2018.06.001
Barrozo, M. A. S., Borel, L. D. M. S., Lira, T. S., & Ataíde, C. H. (2019b). Fluid dynamics analysis and pyrolysis of brewer’s spent grain in a spouted bed reactor. Particuology, 42, 199-207. https://doi.org/10.1016/J.PARTIC.2018.06.001 DOI: https://doi.org/10.1016/j.partic.2018.06.001
Cloete, J. H., Cloete, S., Radl, S., & Amini, S. (2016). Evaluation of wall friction models for riser flow. Powder Technology, 303, 156-167. https://doi.org/10.1016/J.POWTEC.2016.07.009 DOI: https://doi.org/10.1016/j.powtec.2016.07.009
Epstein, N., & Grace, J. R. (2010). Spouted and spout-fluid beds: Fundamentals and applications. Spouted and Spout-Fluid Beds: Fundamentals and Applications, 9780521517973, 1-340. https://doi.org/10.1017/CBO9780511777936 DOI: https://doi.org/10.1017/CBO9780511777936.002
Geldart, D. (1973). Types of gas fluidization. Powder Technology, 7(5), 285-292. https://doi.org/10.1016/0032-5910(73)80037-3 DOI: https://doi.org/10.1016/0032-5910(73)80037-3
Gidaspow, D., Bezburuah, R., & Ding, J. (1991). Hydrodynamics of circulating fluidized beds: Kinetic theory approach. https://www.osti.gov/biblio/5896246
Hosseini, S. H., Ahmadi, G., Saeedi Razavi, B., & Zhong, W. (2010). Computational fluid dynamic simulation of hydrodynamic behavior in a two-dimensional conical spouted bed. Energy and Fuels, 24(11), 6086-6098. https://doi.org/10.1021/EF100612R DOI: https://doi.org/10.1021/ef100612r
I.D. Burdett, R.S. Eisinger, P. Cai, & K.H. Lee. (2001). Gas-phase fluidization technology for production of polyolefins, in: Fluid. X. United Engineering Foundation, 39-52.
J. San Jose, M., Olazar, M., J. Penas, F., & Bilbao, J. (2002). Segregation in Conical Spouted Beds with Binary and Ternary Mixtures of Equidensity Spherical Particles. Industrial & Engineering Chemistry Research, 33(7), 1838-1844. https://doi.org/10.1021/ie00031a025
Kiani, M., Rahimi, M. R., Hosseini, S. H., & Ahmadi, G. (2017). Mixing and segregation of solid particles in a conical spouted bed: Effect of particle size and density. Particuology, 32, 132-140. https://doi.org/10.1016/J.PARTIC.2016.06.006 DOI: https://doi.org/10.1016/j.partic.2016.06.006
Kutluoglu, E., Grace, J. R., Murchie, K. W., & Cavanagh, P. H. (1983). Particle segregation in spouted beds. The Canadian Journal of Chemical Engineering, 61(3), 308-316. https://doi.org/10.1002/CJCE.5450610309 DOI: https://doi.org/10.1002/cjce.5450610309
Lan, X., Xu, C., Gao, J., & Al-Dahhan, M. (2012). Influence of solid-phase wall boundary condition on CFD simulation of spouted beds. Chemical Engineering Science, 69(1), 419-430. https://doi.org/10.1016/J.CES.2011.10.064 DOI: https://doi.org/10.1016/j.ces.2011.10.064
Li, T., & Benyahia, S. (2012). Revisiting Johnson and Jackson boundary conditions for granular flows. AIChE Journal, 58(7), 2058-2068. https://doi.org/10.1002/AIC.12728 DOI: https://doi.org/10.1002/aic.12728
Li, T., & Benyahia, S. (2013). Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations. AIChE Journal, 59(10), 3624-3632. https://doi.org/10.1002/AIC.14132 DOI: https://doi.org/10.1002/aic.14132
Libardi, B. P., Xavier, T. P., Lira, T. S., & Barrozo, M. A. S. (2016). Fluid dynamic analysis for pyrolysis of macadamia shell in a conical spouted bed. Powder Technology, 299, 210-216. https://doi.org/10.1016/J.POWTEC.2016.05.034 DOI: https://doi.org/10.1016/j.powtec.2016.05.034
López, G., Olazar, M., Aguado, R., & Bilbao, J. (2010). Continuous pyrolysis of waste tyres in a conical spouted bed reactor. Fuel, 89(8), 1946-1952. https://doi.org/10.1016/J.FUEL.2010.03.029 DOI: https://doi.org/10.1016/j.fuel.2010.03.029
Lun, C. K. K., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics, 140, 223. https://doi.org/10.1017/S0022112084000586 DOI: https://doi.org/10.1017/S0022112084000586
Mahmoodi, B., Hosseini, S. H., Olazar, M., & Altzibar, H. (2017). CFD-DEM simulation of a conical spouted bed with open-sided draft tube containing fine particles. Journal of the Taiwan Institute of Chemical Engineers, 81, 275-287. https://doi.org/10.1016/J.JTICE.2017.09.051 DOI: https://doi.org/10.1016/j.jtice.2017.09.051
Mantegazini, D. Z., Neves, F. L., Xavier, T. P., & Bacelos, M. S. (2021). Review on advanced technologies for aluminum recovery from carton packageswaste using pyrolysis. Brazilian Journal of Production Engineering - BJPE, ISSN-e 2447-5580, (Ejemplar dedicado a: Número Regular (Janeiro - Março)), 7(1), 117-129. https://dialnet.unirioja.es/servlet/articulo?codigo=8698457&info=resumen&idioma=ENG DOI: https://doi.org/10.47456/bjpe.v7i1.34583
Mantegazini, D. Z., Xavier, T. P., & Bacelos, M. S. (2021). Conical spouted beds for waste valorization: Assessment of particle segregation in beds composed of sand and Tetra Pak residues. Sustainable Energy Technologies and Assessments, 47, 101334. https://doi.org/10.1016/J.SETA.2021.101334 DOI: https://doi.org/10.1016/j.seta.2021.101334
Marques, I. I. D. R., Rocha, S. M. S., Lira, T. S., & Bacelos, M. S. (2012). Air-Carton Packaging Waste Flow Dynamics in a Conical Spouted Bed. Procedia Engineering, 42, 70-79. https://doi.org/10.1016/J.PROENG.2012.07.396 DOI: https://doi.org/10.1016/j.proeng.2012.07.396
Mathur, K. B., & Gishler, P. E. (1955). A technique for contacting gases with coarse solid particles. Aiche Journal, 1(2), 157-164. https://doi.org/10.1002/AIC.690010205 DOI: https://doi.org/10.1002/aic.690010205
Melo, J. L. Z., Bacelos, M. S., Pereira, F. A. R., Lira, T. S., & Gidaspow, D. (2016). CFD modeling of conical spouted beds for processing LDPE/Al composite. Chemical Engineering and Processing - Process Intensification, 108, 93–108. https://doi.org/10.1016/J.CEP.2016.07.011 DOI: https://doi.org/10.1016/j.cep.2016.07.011
Niksiar, A., Faramarzi, A. H., & Sohrabi, M. (2015). Kinetic study of polyethylene terephthalate (PET) pyrolysis in a spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 113, 419-425. https://doi.org/10.1016/J.JAAP.2015.03.002 DOI: https://doi.org/10.1016/j.jaap.2015.03.002
Niksiar, A. & Sohrabi, M. (2014). Mathematical modeling of waste plastic pyrolysis in conical spouted beds: Heat, mass, and momentum transport. Journal of Analytical and Applied Pyrolysis, 110, 66-78. https://doi.org/10.1016/J.JAAP.2014.08.005 DOI: https://doi.org/10.1016/j.jaap.2014.08.005
Olazar, M., Alvarez, S., Aguado, R., & San José, M. J. (2003). Spouted Bed Reactors. Chemical Engineering & Technology, 26(8), 845-852. https://doi.org/10.1002/CEAT.200300006 DOI: https://doi.org/10.1002/ceat.200300006
Olazar, M., Arandes, J. M., Zabala, G., Aguayo, A. T., & Bilbao, J. (1997). Design and Operation of a Catalytic Polymerization Reactor in a Dilute Spouted Bed Regime. Industrial & Engineering Chemistry Research, 36(5), 1637-1643. https://doi.org/10.1021/ie960616q DOI: https://doi.org/10.1021/ie960616q
Olazar, M., J. San Jose, M., J. Penas, F., T. Aguayo, A., & Bilbao, J. (2002). Stability and hydrodynamics of conical spouted beds with binary mixtures. Industrial & Engineering Chemistry Research, 32(11), 2826–2834. https://doi.org/10.1021/ie00023a053
Olazar, M., San Jose, M. J., Penas, F. J., Aguayo, A. T., & Bilbao, J. (1993). Stability and hydrodynamics of conical spouted beds with binary mixtures. Industrial & Engineering Chemistry Research, 32(11), 2826-2834. https://doi.org/10.1021/ie00023a053 DOI: https://doi.org/10.1021/ie00023a053
Olazar, M., San José, M. J., Zabala, G., & Bilbao, J. (1994). New reactor in jet spouted bed regime for catalytic polymerizations. Chemical Engineering Science, 49(24), 4579-4588. https://doi.org/10.1016/S0009-2509(05)80042-9 DOI: https://doi.org/10.1016/S0009-2509(05)80042-9
Park, H. C., Lee, B. K., Yoo, H. S., & Choi, H. S. (2017). [TC2015] fast pyrolysis characteristics of biomass in a conical spouted bed reactor. Environmental Progress and Sustainable Energy, 36(3), 685-689. https://doi.org/10.1002/EP.12476 DOI: https://doi.org/10.1002/ep.12476
Patankar, S. V. (1980). Numerical heat transfer and fluid flow. https://doi.org/10.13182/nse81-a20112 DOI: https://doi.org/10.13182/NSE81-A20112
Rovero, G., & Piccinini, N. (2011). Particle mixing and segregation. Em N. Epstein & J. Grace (Orgs.), Spouted and Spout-Fluid Beds: Fundamentals and Applications (1st ed, p. 141–160). Cambridge University Press. https://doi.org/doi:10.1017/CBO9780511777936.009 DOI: https://doi.org/10.1017/CBO9780511777936.009
San José, M. J., Alvarez, S., & López, R. (2018). Drying of industrial sludge waste in a conical spouted bed dryer. Effect of air temperature and air velocity. Drying Technology, 1-11. https://doi.org/10.1080/07373937.2018.1441155 DOI: https://doi.org/10.1080/07373937.2018.1441155
San Jose, M. J., Olazar, M., Penas, F. J., & Bilbao, J. (1994). Segregation in Conical Spouted Beds with Binary and Ternary Mixtures of Equidensity Spherical Particles. Industrial & Engineering Chemistry Research, 33(7), 1838-1844. https://doi.org/10.1021/ie00031a025 DOI: https://doi.org/10.1021/ie00031a025
Santos, K. G., Ferreira, L. V., Santana, R. C., & Barrozo, M. A. S. (2017). CFD Simulation of Spouted Bed Working with a Size Distribution of Sand Particles: Segregation Aspects. Materials Science Forum, 899, 95-100. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.899.95 DOI: https://doi.org/10.4028/www.scientific.net/MSF.899.95
Setarehshenas, N., Hosseini, S. H., Esfahany, M. N., & Ahmadi, G. (2016). Impacts of solid-phase wall boundary condition on CFD simulation of conical spouted beds containing heavy zirconia particles. Journal of the Taiwan Institute of Chemical Engineers, 64, 146-156. https://doi.org/10.1016/J.JTICE.2016.04.005 DOI: https://doi.org/10.1016/j.jtice.2016.04.005
Southpointe, A. (2013). ANSYS Fluent User’s Guide 15.0. ANSYS, Inc., Canonsberg, PA.
Syamlal, M., Rogers, W., & O’Brien, T. J. (1993). MFIX documentation: Theory guide. National Energy Technology Laboratory, Department of Energy, Technical Note DOE/METC-95/1013 and NTIS/DE95000031. DOI: https://doi.org/10.2172/10145548
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Brazilian Journal of Production Engineering
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.